EdgeMark: An Automation and Benchmarking System for Embedded Artificial Intelligence Tools
- URL: http://arxiv.org/abs/2502.01700v1
- Date: Mon, 03 Feb 2025 08:28:01 GMT
- Title: EdgeMark: An Automation and Benchmarking System for Embedded Artificial Intelligence Tools
- Authors: Mohammad Amin Hasanpour, Mikkel Kirkegaard, Xenofon Fafoutis,
- Abstract summary: The integration of artificial intelligence (AI) into embedded devices is transforming industries by enabling intelligent data processing at the edge.
This paper provides a review of existing eAI tools, highlighting their features, trade-offs, and limitations.
We also introduce EdgeMark, an open-source automation system designed to streamline the benchmarking workflow for deploying and benchmarking machine learning (ML) models on embedded platforms.
- Score: 0.0
- License:
- Abstract: The integration of artificial intelligence (AI) into embedded devices, a paradigm known as embedded artificial intelligence (eAI) or tiny machine learning (TinyML), is transforming industries by enabling intelligent data processing at the edge. However, the many tools available in this domain leave researchers and developers wondering which one is best suited to their needs. This paper provides a review of existing eAI tools, highlighting their features, trade-offs, and limitations. Additionally, we introduce EdgeMark, an open-source automation system designed to streamline the workflow for deploying and benchmarking machine learning (ML) models on embedded platforms. EdgeMark simplifies model generation, optimization, conversion, and deployment while promoting modularity, reproducibility, and scalability. Experimental benchmarking results showcase the performance of widely used eAI tools, including TensorFlow Lite Micro (TFLM), Edge Impulse, Ekkono, and Renesas eAI Translator, across a wide range of models, revealing insights into their relative strengths and weaknesses. The findings provide guidance for researchers and developers in selecting the most suitable tools for specific application requirements, while EdgeMark lowers the barriers to adoption of eAI technologies.
Related papers
- Optimizing Edge AI: A Comprehensive Survey on Data, Model, and System Strategies [14.115655986504411]
5G and edge computing hardware has brought about a significant shift in artificial intelligence.
deploying state-of-the-art AI models on resource-constrained edge devices faces significant challenges.
This paper presents an optimization triad for efficient and reliable edge AI deployment.
arXiv Detail & Related papers (2025-01-04T06:17:48Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
Manufacturers of AI-integrated products face a critical challenge: selecting an accelerator that aligns with their product's performance requirements.
The Abstract Computer Architecture Description Language (ACADL) is a concise formalization of computer architecture block diagrams.
In this paper, we demonstrate how to use the ACADL to model AI hardware accelerators, use their ACADL description to map DNNs onto them, and explain the timing simulation semantics to gather performance results.
arXiv Detail & Related papers (2024-01-30T19:27:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs [14.397623940689487]
Graphcore Intelligence Processing Unit (IPU), Sambanova Reconfigurable Dataflow Unit (RDU), and enhanced GPU platforms are reviewed.
This research provides a preliminary evaluation and comparison of these commercial AI/ML accelerators.
arXiv Detail & Related papers (2023-11-08T01:06:25Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - A Comprehensive Review and a Taxonomy of Edge Machine Learning:
Requirements, Paradigms, and Techniques [5.964672966134971]
The union of Edge Computing (EC) and Artificial Intelligence (AI) has brought forward the Edge AI concept to provide intelligent solutions close to the end-user environment.
Machine Learning (ML), as the most advanced branch of AI in the past few years, has shown encouraging results and applications in the edge environment.
This paper aims at providing a comprehensive taxonomy and a systematic review of Edge ML techniques.
arXiv Detail & Related papers (2023-02-16T20:33:33Z) - MONAI Label: A framework for AI-assisted Interactive Labeling of 3D
Medical Images [49.664220687980006]
The lack of annotated datasets is a major bottleneck for training new task-specific supervised machine learning models.
We present MONAI Label, a free and open-source framework that facilitates the development of applications based on artificial intelligence (AI) models.
arXiv Detail & Related papers (2022-03-23T12:33:11Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
arXiv Detail & Related papers (2021-01-12T11:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.