論文の概要: Cross-cultural Deployment of Autonomous Vehicles Using Data-light Inverse Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2504.11506v1
- Date: Tue, 15 Apr 2025 08:22:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:30.761445
- Title: Cross-cultural Deployment of Autonomous Vehicles Using Data-light Inverse Reinforcement Learning
- Title(参考訳): データライト逆強化学習を用いた自動車の異文化間展開
- Authors: Hongliang Lu, Shuqi Shen, Junjie Yang, Chao Lu, Xinhu Zheng, Hai Yang,
- Abstract要約: 文化の多様化は、現在、様々な地域における自動運転車の展開における最大の課題の1つとなっている。
本稿では,データ光逆強化学習(Data-light inverse reinforcement learning)と呼ばれる,AVの異文化間展開方式を提案する。
まず,ドイツ,中国,米国という3カ国の高速道路における自然主義的運転データセットの総合的な比較分析を通じて,運転文化の多様化を報告した。
そして,これらの3つの国にまたがる急激な異文化間展開を,累積試験距離56084km以上で検証し,その有効性を実証した。
- 参考スコア(独自算出の注目度): 15.830310361698078
- License:
- Abstract: More than the adherence to specific traffic regulations, driving culture touches upon a more implicit part - an informal, conventional, collective behavioral pattern followed by drivers - that varies across countries, regions, and even cities. Such cultural divergence has become one of the biggest challenges in deploying autonomous vehicles (AVs) across diverse regions today. The current emergence of data-driven methods has shown a potential solution to enable culture-compatible driving through learning from data, but what if some underdeveloped regions cannot provide sufficient local data to inform driving culture? This issue is particularly significant for a broader global AV market. Here, we propose a cross-cultural deployment scheme for AVs, called data-light inverse reinforcement learning, designed to re-calibrate culture-specific AVs and assimilate them into other cultures. First, we report the divergence in driving cultures through a comprehensive comparative analysis of naturalistic driving datasets on highways from three countries: Germany, China, and the USA. Then, we demonstrate the effectiveness of our scheme by testing the expeditious cross-cultural deployment across these three countries, with cumulative testing mileage of over 56084 km. The performance is particularly advantageous when cross-cultural deployment is carried out without affluent local data. Results show that we can reduce the dependence on local data by a margin of 98.67% at best. This study is expected to bring a broader, fairer AV global market, particularly in those regions that lack enough local data to develop culture-compatible AVs.
- Abstract(参考訳): 特定の交通規制に固執する以上に、運転文化はより暗黙的な部分、つまり非公式で慣習的で集団的な行動パターンに触発され、ドライバーは国、地域、さらには都市によって異なる。
このような文化的分岐は、現在、様々な地域で自動運転車(AV)を配備する上で、最大の課題の1つとなっている。
データ駆動方式の現在の出現は、データから学習することで、カルチャー互換な運転を可能にする潜在的な解決策を示しているが、未発達の地域によっては、運転文化に十分なローカルデータを提供できない場合はどうだろう?
この問題は、グローバルなAV市場にとって特に重要である。
本稿では,データ光逆強化学習(Data-light inverse reinforcement learning)と呼ばれる,文化固有のAVを再校正し,それを他の文化に同化するための異文化間展開手法を提案する。
まず,ドイツ,中国,米国という3カ国の高速道路における自然主義的運転データセットの総合的な比較分析を通じて,運転文化の多様化を報告した。
そして,これらの3つの国にまたがる急激な異文化間展開を,累積試験距離56084km以上で検証し,その有効性を実証した。
豊かなローカルデータなしで、異文化間デプロイメントを行う場合、パフォーマンスは特に有利である。
その結果,ローカルデータへの依存度を98.67%に抑えることができた。
この研究は、特にカルチャー互換のAVを開発するのに十分なローカルデータがない地域において、より広く公平なAV市場をもたらすことが期待されている。
関連論文リスト
- Bridging the Data Provenance Gap Across Text, Speech and Video [67.72097952282262]
我々は、人気テキスト、音声、ビデオデータセットのモダリティにまたがって、最大かつ第1級の経時的監査を行う。
私たちの手動分析では、1990年から2024年の間に、608言語、798のソース、659の組織、67の国で4000近い公開データセットをカバーしています。
マルチモーダル機械学習アプリケーションは、トレーニングセットのために、YouTubeのようなWebcrawled、synthetic、ソーシャルメディアプラットフォームに圧倒的に移行した。
論文 参考訳(メタデータ) (2024-12-19T01:30:19Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMはますますグローバルなアプリケーションにデプロイされ、さまざまなバックグラウンドを持つユーザが尊敬され、理解されることが保証される。
文化的な害は、これらのモデルが特定の文化的規範と一致しないときに起こり、文化的な価値観の誤った表現や違反をもたらす。
潜在的な文化的不感を露呈するシナリオを通じて、異なる文化的文脈におけるモデルアウトプットを評価するために作成された文化的調和テストデータセットと、多様なアノテータからのフィードバックに基づいた微調整による文化的感受性の回復を目的とした、文化的に整合した選好データセットである。
論文 参考訳(メタデータ) (2024-10-15T18:13:10Z) - Can LVLMs Obtain a Driver's License? A Benchmark Towards Reliable AGI for Autonomous Driving [24.485164073626674]
各国から収集された100万件以上のデータを含む大規模データセットであるIDKBを提案する。
運転免許取得のプロセスと同様に、IDKBは理論から実践への運転に必要な知識のほとんど全てを包含している。
論文 参考訳(メタデータ) (2024-09-04T17:52:43Z) - Crossroads of Continents: Automated Artifact Extraction for Cultural Adaptation with Large Multimodal Models [22.92083941222383]
DALL-E 3によって生成され、人間によって検証される大規模なデータセットであるDalleStreetを紹介する。
我々は,オープンソース(LLaVA)とクローズドソース(GPT-4V)の両方のモデルを用いて,地理的サブリージョンレベルでの文化的理解の相違を見出した。
以上の結果から,LMMの文化的能力の微妙なイメージが浮かび上がっており,文化認識システムの開発の必要性が浮かび上がっている。
論文 参考訳(メタデータ) (2024-07-02T08:55:41Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Learning to Drive Anywhere [38.547150940396904]
地理的に認識された条件付き模倣学習モデルであるAnyDを提案する。
我々の重要な洞察は、高容量なジオロケーションベースのチャネルアテンションメカニズムを導入することである。
提案手法は、本質的に不均衡なデータ分布と位置依存イベントを効率的にスケールすることができる。
論文 参考訳(メタデータ) (2023-09-21T17:55:36Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。