REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites
- URL: http://arxiv.org/abs/2504.11543v2
- Date: Thu, 17 Apr 2025 16:28:46 GMT
- Title: REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites
- Authors: Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav Putta, Naman Garg, Tomas Abraham, Michael Lara, Federico Lopez, James Liu, Atharva Gundawar, Prannay Hebbar, Youngchul Joo, Jindong Gu, Charles London, Christian Schroeder de Witt, Sumeet Motwani,
- Abstract summary: We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites.<n>We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions.<n>Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation.
- Score: 9.58858258192147
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation, marking a significant step forward in evaluating and advancing agent capabilities.
Related papers
- AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories [59.214178488091584]
We propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents.<n>Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks.<n>We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents.
arXiv Detail & Related papers (2025-04-11T19:49:22Z) - An Illusion of Progress? Assessing the Current State of Web Agents [49.76769323750729]
We conduct a comprehensive and rigorous assessment of the current state of web agents.
Results depict a very different picture of the competency of current agents, suggesting over-optimism in previously reported results.
We introduce Online-Mind2Web, an online evaluation benchmark consisting of 300 diverse and realistic tasks spanning 136 websites.
arXiv Detail & Related papers (2025-04-02T05:51:29Z) - Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
This paper introduces a benchmarking framework to assess large language models (LLMs)
It integrates generative agent simulation to evaluate performance on key dimensions: information extraction, context awareness, and adaptive engagement.
Results show that adaptive strategies improve data extraction accuracy, especially when handling ambiguous responses.
arXiv Detail & Related papers (2025-02-04T15:47:47Z) - The BrowserGym Ecosystem for Web Agent Research [151.90034093362343]
BrowserGym ecosystem addresses the growing need for efficient evaluation and benchmarking of web agents.<n>We propose an extended BrowserGym-based ecosystem for web agent research, which unifies existing benchmarks from the literature.<n>We conduct the first large-scale, multi-benchmark web agent experiment and compare the performance of 6 state-of-the-art LLMs across 6 popular web agent benchmarks.
arXiv Detail & Related papers (2024-12-06T23:43:59Z) - CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments [90.29937153770835]
We introduce CRMArena, a benchmark designed to evaluate AI agents on realistic tasks grounded in professional work environments.
We show that state-of-the-art LLM agents succeed in less than 40% of the tasks with ReAct prompting, and less than 55% even with function-calling abilities.
Our findings highlight the need for enhanced agent capabilities in function-calling and rule-following to be deployed in real-world work environments.
arXiv Detail & Related papers (2024-11-04T17:30:51Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
This study enhances an LLM-based web agent by simply refining its observation and action space.
AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively.
arXiv Detail & Related papers (2024-10-17T17:50:38Z) - Revisiting Benchmark and Assessment: An Agent-based Exploratory Dynamic Evaluation Framework for LLMs [29.72874725703848]
We introduce two key concepts: Benchmark+, which extends the traditional question-answer benchmark into a more flexible strategy-criterion'' format; and Assessment+, which enhances the interaction process.<n>We propose TestAgent, an agent-based evaluation framework that implements these concepts using retrieval-augmented generation and reinforcement learning.<n>TestAgent enables automatic dynamic benchmark generation and in-depth assessment across diverse vertical domain scenarios.
arXiv Detail & Related papers (2024-10-15T11:20:42Z) - Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents [44.34340798542]
Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex reasoning.
Traditional supervised pre-training on static datasets falls short in enabling autonomous agent capabilities.
We propose a framework that combines guided Monte Carlo Tree Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on agent interactions.
arXiv Detail & Related papers (2024-08-13T20:52:13Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.<n>We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.<n>We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - Large Language Models Can Self-Improve At Web Agent Tasks [37.17001438055515]
Large language models (LLMs) have recently demonstrated some capability to navigate novel environments as agents in a zero-shot or few-shot fashion.
We explore the extent to which LLMs can self-improve their performance as agents in long-horizon tasks in a complex environment using the WebArena benchmark.
We achieve a 31% improvement in task completion rate over the base model on the WebArena benchmark through a self-improvement procedure.
arXiv Detail & Related papers (2024-05-30T17:52:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.