Towards a Universal Vibration Analysis Dataset: A Framework for Transfer Learning in Predictive Maintenance and Structural Health Monitoring
- URL: http://arxiv.org/abs/2504.11581v1
- Date: Tue, 15 Apr 2025 19:57:26 GMT
- Title: Towards a Universal Vibration Analysis Dataset: A Framework for Transfer Learning in Predictive Maintenance and Structural Health Monitoring
- Authors: Mert Sehri, Igor Varejão, Zehui Hua, Vitor Bonella, Adriano Santos, Francisco de Assis Boldt, Patrick Dumond, Flavio Miguel Varejão,
- Abstract summary: This research will include a broader range of vibration signals from multiple types of machinery.<n>By mirroring the success of ImageNet in visual computing, this dataset has the potential to improve the development of intelligent systems in industrial applications.
- Score: 0.36136619420474764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ImageNet has become a reputable resource for transfer learning, allowing the development of efficient ML models with reduced training time and data requirements. However, vibration analysis in predictive maintenance, structural health monitoring, and fault diagnosis, lacks a comparable large-scale, annotated dataset to facilitate similar advancements. To address this, a dataset framework is proposed that begins with bearing vibration data as an initial step towards creating a universal dataset for vibration-based spectrogram analysis for all machinery. The initial framework includes a collection of bearing vibration signals from various publicly available datasets. To demonstrate the advantages of this framework, experiments were conducted using a deep learning architecture, showing improvements in model performance when pre-trained on bearing vibration data and fine-tuned on a smaller, domain-specific dataset. These findings highlight the potential to parallel the success of ImageNet in visual computing but for vibration analysis. For future work, this research will include a broader range of vibration signals from multiple types of machinery, emphasizing spectrogram-based representations of the data. Each sample will be labeled according to machinery type, operational status, and the presence or type of faults, ensuring its utility for supervised and unsupervised learning tasks. Additionally, a framework for data preprocessing, feature extraction, and model training specific to vibration data will be developed. This framework will standardize methodologies across the research community, allowing for collaboration and accelerating progress in predictive maintenance, structural health monitoring, and related fields. By mirroring the success of ImageNet in visual computing, this dataset has the potential to improve the development of intelligent systems in industrial applications.
Related papers
- Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)<n>In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.<n>We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - Advancing fNIRS Neuroimaging through Synthetic Data Generation and Machine Learning Applications [0.0]
This study presents an integrated approach for advancing functional Near-Infrared Spectroscopy (fNIRS) neuroimaging.
By addressing the scarcity of high-quality neuroimaging datasets, this work harnesses Monte Carlo simulations and parametric head models to generate a comprehensive synthetic dataset.
A cloud-based infrastructure is established for scalable data generation and processing, enhancing the accessibility and quality of neuroimaging data.
arXiv Detail & Related papers (2024-05-18T09:50:19Z) - BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation [57.40024206484446]
We introduce the BEHAVIOR Vision Suite (BVS), a set of tools and assets to generate fully customized synthetic data for systematic evaluation of computer vision models.
BVS supports a large number of adjustable parameters at the scene level.
We showcase three example application scenarios.
arXiv Detail & Related papers (2024-05-15T17:57:56Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.<n>We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - FaultFormer: Pretraining Transformers for Adaptable Bearing Fault Classification [7.136205674624813]
We present a novel self-supervised pretraining and fine-tuning framework based on transformer models.
In particular, we investigate different tokenization and data augmentation strategies to reach state-of-the-art accuracies.
This introduces a new paradigm where models can be pretrained on unlabeled data from different bearings, faults, and machinery and quickly deployed to new, data-scarce applications.
arXiv Detail & Related papers (2023-12-04T22:51:02Z) - Leaving Reality to Imagination: Robust Classification via Generated
Datasets [24.411444438920988]
Recent research on robustness has revealed significant performance gaps between neural image classifiers trained on datasets similar to the test set.
We study the question: How do generated datasets influence the natural robustness of image classifiers?
We find that Imagenet classifiers trained on real data augmented with generated data achieve higher accuracy and effective robustness than standard training.
arXiv Detail & Related papers (2023-02-05T22:49:33Z) - Learning dynamics from partial observations with structured neural ODEs [5.757156314867639]
We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification.
We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
arXiv Detail & Related papers (2022-05-25T07:54:10Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Addressing Bias in Visualization Recommenders by Identifying Trends in
Training Data: Improving VizML Through a Statistical Analysis of the Plotly
Community Feed [55.41644538483948]
Machine learning is a promising approach to visualization recommendation due to its high scalability and representational power.
Our research project aims to address training bias in machine learning visualization recommendation systems by identifying trends in the training data through statistical analysis.
arXiv Detail & Related papers (2022-03-09T18:36:46Z) - Flurry: a Fast Framework for Reproducible Multi-layered Provenance Graph
Representation Learning [0.44040106718326594]
Flurry is an end-to-end data pipeline which simulates cyberattacks.
It captures data from these attacks at multiple system and application layers, converts audit logs from these attacks into data provenance graphs, and incorporates this data with a framework for training deep neural models.
We showcase this pipeline by processing data from multiple system attacks and performing anomaly detection via graph classification.
arXiv Detail & Related papers (2022-03-05T13:52:11Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data [0.0]
This paper demonstrates how to construct, use, and evaluate a high performance unsupervised machine learning system for classifying images.
We use the VGG16 convolutional neural network pre-trained on the ImageNet dataset of natural images to extract feature representations for each micrograph.
The approach achieves $99.4% pm 0.16%$ accuracy, and the resulting model can be used to classify new images without retraining.
arXiv Detail & Related papers (2020-07-16T14:36:04Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.