Learning dynamics from partial observations with structured neural ODEs
- URL: http://arxiv.org/abs/2205.12550v1
- Date: Wed, 25 May 2022 07:54:10 GMT
- Title: Learning dynamics from partial observations with structured neural ODEs
- Authors: Mona Buisson-Fenet, Valery Morgenthaler, Sebastian Trimpe, Florent Di
Meglio
- Abstract summary: We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification.
We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
- Score: 5.757156314867639
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying dynamical systems from experimental data is a notably difficult
task. Prior knowledge generally helps, but the extent of this knowledge varies
with the application, and customized models are often needed. We propose a
flexible framework to incorporate a broad spectrum of physical insight into
neural ODE-based system identification, giving physical interpretability to the
resulting latent space. This insight is either enforced through hard
constraints in the optimization problem or added in its cost function. In order
to link the partial and possibly noisy observations to the latent state, we
rely on tools from nonlinear observer theory to build a recognition model. We
demonstrate the performance of the proposed approach on numerical simulations
and on an experimental dataset from a robotic exoskeleton.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
We address the issue of modeling and estimating changes in the state oftemporal- dynamical systems based on a sequence of observations like video frames.
This paper propose the universal expert module -- that is, optical flow estimation component, to capture the laws of general physical processes in a data-driven fashion.
We conduct extensive experiments and ablations to demonstrate that the proposed framework achieves large performance margins, compared with the existing SOTA baselines.
arXiv Detail & Related papers (2024-02-06T06:27:07Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
We extend the Neural ODE Process model to use additional information within the Learning Using Privileged Information setting.
We validate our extension with experiments showing improved accuracy and calibration on simulated dynamics tasks.
arXiv Detail & Related papers (2021-04-29T12:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.