論文の概要: DamageCAT: A Deep Learning Transformer Framework for Typology-Based Post-Disaster Building Damage Categorization
- arxiv url: http://arxiv.org/abs/2504.11637v1
- Date: Tue, 15 Apr 2025 21:53:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:39:49.385805
- Title: DamageCAT: A Deep Learning Transformer Framework for Typology-Based Post-Disaster Building Damage Categorization
- Title(参考訳): damageCAT: 火災後建物被害分類のための深層学習トランスフォーマフレームワーク
- Authors: Yiming Xiao, Ali Mostafavi,
- Abstract要約: 本稿では,分類的分類的損傷記述を提供する新しいフレームワークであるDanceCATを紹介する。
TypoSATデータセットには、ハリケーン・アイダの衛星画像三つ子(災害前、災害後、被害マスク)が含まれている。
階層的なU-Netベースのトランスフォーマーアーキテクチャは、災害前のイメージペアを効果的に処理し、建物の損傷を特定し分類する。
- 参考スコア(独自算出の注目度): 1.9835707645687721
- License:
- Abstract: Natural disasters increasingly threaten communities worldwide, creating an urgent need for rapid, reliable building damage assessment to guide emergency response and recovery efforts. Current methods typically classify damage in binary (damaged/undamaged) or ordinal severity terms, limiting their practical utility. In fact, the determination of damage typology is crucial for response and recovery efforts. To address this important gap, this paper introduces DamageCAT, a novel framework that provides typology-based categorical damage descriptions rather than simple severity ratings. Accordingly, this study presents two key contributions: (1) the BD-TypoSAT dataset containing satellite image triplets (pre-disaster, post-disaster, and damage masks) from Hurricane Ida with four damage categories (partial roof damage, total roof damage, partial structural collapse, and total structural collapse), and (2) a hierarchical U-Net-based transformer architecture that effectively processes pre-post disaster image pairs to identify and categorize building damage. Despite significant class imbalances in the training data, our model achieved robust performance with overall metrics of 0.7921 Intersection over Union (IoU) and 0.8835 F1 scores across all categories. The model's capability to recognize intricate damage typology in less common categories is especially remarkable. The DamageCAT framework advances automated damage assessment by providing actionable, typological information that better supports disaster response decision-making and resource allocation compared to traditional severity-based approaches.
- Abstract(参考訳): 自然災害は世界中の社会を脅かすものとなり、緊急対応と復旧を導くために、迅速で信頼性の高い建物被害評価を緊急に必要とするようになった。
現在の方法では、損傷を二分法(損傷/損傷のない)または順序厳密な条件で分類し、実用性を制限するのが一般的である。
事実, 損傷の類型化の決定は, 応答と回復の努力に不可欠である。
この重要なギャップに対処するため,本論文では,簡易な重度評価ではなく,タイポロジーに基づく分類的損傷記述を提供する新しいフレームワークであるDanceCATを紹介する。
そこで本研究では, ハリケーン・アイダの衛星画像三重項を含むBD-TypoSATデータセット(プレディザスター, ポストディザスター, 損傷マスク)に, 4つの損傷カテゴリー(部分的屋根損傷, 総屋根損傷, 部分的構造崩壊, 総構造崩壊)と, 2) 災害前の画像ペアを効果的に処理し, 建物損傷を識別・分類する階層的U-Netトランスフォーマーアーキテクチャを提案する。
トレーニングデータにかなりのクラス不均衡があったにもかかわらず、我々のモデルは全カテゴリで0.7921のIntersection over Union (IoU)と0.8835のF1スコアで堅牢なパフォーマンスを達成した。
このモデルでは、あまり一般的でないカテゴリーで複雑な損傷型を認識できる能力は特に顕著である。
災害対応意思決定と資源配分を従来の重度手法と比較して支援し, 行動可能なタイプ的情報を提供することにより, 自動被害評価を推し進める。
関連論文リスト
- Multiclass Post-Earthquake Building Assessment Integrating Optical and SAR Satellite Imagery, Ground Motion, and Soil Data with Transformers [0.0]
本研究では,地震後の高分解能衛星画像と構造物の耐震性能に関連する建築固有のメタデータを組み合わせたフレームワークを提案する。
2023年2月6日トルコ・シリア地震の建物群を対象とした多層地震後の被害同定において, 現状の成果が得られた。
論文 参考訳(メタデータ) (2024-12-05T23:19:51Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery [12.869300064524122]
本稿では, 損傷評価, セグメンテーション, 分類において, ディープラーニングモデルによる2つの重要な課題を遂行するソリューションを提案する。
我々の最良のモデルは、建物識別セマンティックセグメンテーション畳み込みニューラルネットワーク(CNN)と建物損傷分類CNNを組み合わせ、合計F1スコアは0.66である。
本モデルでは比較的精度の高い建物を同定することができたが,災害タイプによる被害の分類は困難であることが判明した。
論文 参考訳(メタデータ) (2024-05-08T04:21:03Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
本研究は,人工知能(AI)と多視点画像を用いた,より信頼性の高い建築損傷分類を実現することを目的とする。
提案モデルでは, ハリケーン・ハーヴェイに続き, 調査対象の建物について, 専門家ラベル付きジオタグ付き画像を含む偵察視覚データセットを訓練し, 検証した。
論文 参考訳(メタデータ) (2022-08-06T01:04:13Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
我々は、プレサスタ衛星画像とポストサスタ衛星画像とをラベル付けしたデータセットを使用して、建物ごとの損傷を評価する。
複数の畳み込みニューラルネットワーク(CNN)をトレーニングし、建物ごとの損傷を評価する。
我々の研究は、人為的気候変動による人道的危機の進行に、計算的に貢献することを目指している。
論文 参考訳(メタデータ) (2022-01-24T16:55:56Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
本研究では, ハリケーン, 洪水, 火災などの自然災害後の建物被害を効率的に評価する課題について検討する。
最初のコントリビューションは、ソーシャルメディアからユーザ生成された空中ビデオと、インスタンスレベルのビルディング損傷マスクのアノテーションで構成される、新しいデータセットである。
第二のコントリビューションはMSNetと呼ばれる新しいモデルで、新しい領域の提案ネットワーク設計を含んでいる。
論文 参考訳(メタデータ) (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。