Data driven approach towards more efficient Newton-Raphson power flow calculation for distribution grids
- URL: http://arxiv.org/abs/2504.11650v1
- Date: Tue, 15 Apr 2025 22:37:55 GMT
- Title: Data driven approach towards more efficient Newton-Raphson power flow calculation for distribution grids
- Authors: Shengyuan Yan, Farzad Vazinram, Zeynab Kaseb, Lindsay Spoor, Jochen Stiasny, Betul Mamudi, Amirhossein Heydarian Ardakani, Ugochukwu Orji, Pedro P. Vergara, Yu Xiang, Jerry Guo,
- Abstract summary: Power flow (PF) calculations are fundamental to power system analysis to ensure stable and reliable grid operation.<n>The Newton-Raphson (NR) method is commonly used for PF analysis due to its rapid convergence when properly.<n>This work proposes strategies to improve NR, hence minimizing iterations and avoiding divergence.
- Score: 1.6396659596758738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Power flow (PF) calculations are fundamental to power system analysis to ensure stable and reliable grid operation. The Newton-Raphson (NR) method is commonly used for PF analysis due to its rapid convergence when initialized properly. However, as power grids operate closer to their capacity limits, ill-conditioned cases and convergence issues pose significant challenges. This work, therefore, addresses these challenges by proposing strategies to improve NR initialization, hence minimizing iterations and avoiding divergence. We explore three approaches: (i) an analytical method that estimates the basin of attraction using mathematical bounds on voltages, (ii) Two data-driven models leveraging supervised learning or physics-informed neural networks (PINNs) to predict optimal initial guesses, and (iii) a reinforcement learning (RL) approach that incrementally adjusts voltages to accelerate convergence. These methods are tested on benchmark systems. This research is particularly relevant for modern power systems, where high penetration of renewables and decentralized generation require robust and scalable PF solutions. In experiments, all three proposed methods demonstrate a strong ability to provide an initial guess for Newton-Raphson method to converge with fewer steps. The findings provide a pathway for more efficient real-time grid operations, which, in turn, support the transition toward smarter and more resilient electricity networks.
Related papers
- Multi-level datasets training method in Physics-Informed Neural Networks [0.0]
PINNs struggle with the challenging problems which are stiff to be solved and/or have high-frequency components in the solutions.
In this study, an alternative approach is proposed to mitigate the above-mentioned problems.
Inspired by the multi-grid method in CFD community, the underlying idea of the current approach is to efficiently remove different frequency errors via training.
arXiv Detail & Related papers (2025-04-30T05:30:27Z) - A Triple-Inertial Accelerated Alternating Optimization Method for Deep Learning Training [3.246129789918632]
gradient descent (SGD) algorithm has achieved remarkable success in training deep learning models.<n> alternating minimization (AM) methods have emerged as a promising alternative for model training.<n>We propose a novel Triple-Inertial Accelerated Alternating Minimization (TIAM) framework for neural network training.
arXiv Detail & Related papers (2025-03-11T14:42:17Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
This paper proposes a meshless deep learning algorithm, enriched physics-informed neural networks (EPINNs) to solve dynamic Poisson-Nernst-Planck (PNP) equations.
The EPINNs takes the traditional physics-informed neural networks as the foundation framework, and adds the adaptive loss weight to balance the loss functions.
Numerical results indicate that the new method has better applicability than traditional numerical methods in solving such coupled nonlinear systems.
arXiv Detail & Related papers (2024-02-01T02:57:07Z) - Power Flow Analysis Using Deep Neural Networks in Three-Phase Unbalanced
Smart Distribution Grids [0.7037008937757394]
Three deep neural networks (DNNs) are proposed in this paper to predict power flow (PF) solutions.
The training and testing data are generated through the OpenDSS-MATLAB COM interface.
The novelty of the proposed methodology is that the models can accurately predict the PF solutions for the unbalanced distribution grids.
arXiv Detail & Related papers (2024-01-15T04:43:37Z) - PowerFlowNet: Power Flow Approximation Using Message Passing Graph
Neural Networks [2.450802099490248]
Graph Neural Networks (GNNs) have emerged as a promising approach for improving the accuracy and speed of power flow approximations.
In this study, we introduce PowerFlowNet, a novel GNN architecture for PF approximation that showcases similar performance with the traditional Newton-Raphson method.
It significantly outperforms other traditional approximation methods, such as the DC relaxation method, in terms of performance and execution time.
arXiv Detail & Related papers (2023-11-06T09:44:00Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
The paper proposes a fast data-driven setup that uses the sparse and hybrid Gaussian processes (GP) framework to model the power flow equations with input uncertainty.
We advocate the efficiency of the proposed approach by a numerical study over multiple IEEE test cases showing up to two times faster and more accurate solutions.
arXiv Detail & Related papers (2022-08-30T09:27:59Z) - Adversarially Robust Learning for Security-Constrained Optimal Power
Flow [55.816266355623085]
We tackle the problem of N-k security-constrained optimal power flow (SCOPF)
N-k SCOPF is a core problem for the operation of electrical grids.
Inspired by methods in adversarially robust training, we frame N-k SCOPF as a minimax optimization problem.
arXiv Detail & Related papers (2021-11-12T22:08:10Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z) - Physics-Guided Deep Neural Networks for Power Flow Analysis [18.761212680554863]
We propose a physics-guided neural network to solve the power flow (PF) problem.
By encoding different granularity of Kirchhoff's laws and system topology into the rebuilt PF model, our neural-network based PF solver is regularized by the auxiliary task.
arXiv Detail & Related papers (2020-01-31T23:24:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.