Improving LLM Interpretability and Performance via Guided Embedding Refinement for Sequential Recommendation
- URL: http://arxiv.org/abs/2504.11658v1
- Date: Tue, 15 Apr 2025 23:03:53 GMT
- Title: Improving LLM Interpretability and Performance via Guided Embedding Refinement for Sequential Recommendation
- Authors: Nanshan Jia, Chenfei Yuan, Yuhang Wu, Zeyu Zheng,
- Abstract summary: We propose guided embedding refinement to enhance the embeddings associated with the base recommendation system.<n>We generate guided embeddings that capture domain-relevant semantic information on interpretable attributes.<n>The refined embedding achieves approximately $10%$ to $50%$ gains in Mean Reciprocal Rank (MRR), Recall rate, and Normalized Discounted Cumulative Gain (NDCG)
- Score: 18.13513199455587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fast development of Large Language Models (LLMs) offers growing opportunities to further improve sequential recommendation systems. Yet for some practitioners, integrating LLMs to their existing base recommendation systems raises questions about model interpretability, transparency and related safety. To partly alleviate challenges from these questions, we propose guided embedding refinement, a method that carries out a guided and interpretable usage of LLM to enhance the embeddings associated with the base recommendation system. Instead of directly using LLMs as the backbone of sequential recommendation systems, we utilize them as auxiliary tools to emulate the sales logic of recommendation and generate guided embeddings that capture domain-relevant semantic information on interpretable attributes. Benefiting from the strong generalization capabilities of the guided embedding, we construct refined embedding by using the guided embedding and reduced-dimension version of the base embedding. We then integrate the refined embedding into the recommendation module for training and inference. A range of numerical experiments demonstrate that guided embedding is adaptable to various given existing base embedding models, and generalizes well across different recommendation tasks. The numerical results show that the refined embedding not only improves recommendation performance, achieving approximately $10\%$ to $50\%$ gains in Mean Reciprocal Rank (MRR), Recall rate, and Normalized Discounted Cumulative Gain (NDCG), but also enhances interpretability, as evidenced by case studies.
Related papers
- Towards Scalable Semantic Representation for Recommendation [65.06144407288127]
Mixture-of-Codes is proposed to construct semantic IDs based on large language models (LLMs)
Our method achieves superior discriminability and dimension robustness scalability, leading to the best scale-up performance in recommendations.
arXiv Detail & Related papers (2024-10-12T15:10:56Z) - Direct Preference Optimization for LLM-Enhanced Recommendation Systems [33.54698201942643]
Large Language Models (LLMs) have exhibited remarkable performance across a wide range of domains.<n>We propose DPO4Rec, a framework that integrates DPO into LLM-enhanced recommendation systems.<n>Extensive experiments show that DPO4Rec significantly improves re-ranking performance over strong baselines.
arXiv Detail & Related papers (2024-10-08T11:42:37Z) - Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
arXiv Detail & Related papers (2024-09-30T06:07:12Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.<n>We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR)
We propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations.
arXiv Detail & Related papers (2024-03-25T05:12:18Z) - Aligning Large Language Models for Controllable Recommendations [31.255594408462322]
We introduce a collection of supervised learning tasks, augmented with labels derived from a conventional recommender model.
We then develop a reinforcement learning-based alignment procedure to strengthen LLMs' aptitude in responding to users' intentions.
Our method markedly advances the capability of LLMs to comply with instructions within recommender systems, while sustaining a high level of accuracy performance.
arXiv Detail & Related papers (2024-03-08T05:23:27Z) - Empowering Few-Shot Recommender Systems with Large Language Models --
Enhanced Representations [0.0]
Large language models (LLMs) offer novel insights into tackling the few-shot scenarios encountered by explicit feedback-based recommender systems.
Our study can inspire researchers to delve deeper into the multifaceted dimensions of LLMs's involvement in recommender systems.
arXiv Detail & Related papers (2023-12-21T03:50:09Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.