Enhancing High-order Interaction Awareness in LLM-based Recommender Model
- URL: http://arxiv.org/abs/2409.19979v3
- Date: Mon, 18 Nov 2024 06:28:01 GMT
- Title: Enhancing High-order Interaction Awareness in LLM-based Recommender Model
- Authors: Xinfeng Wang, Jin Cui, Fumiyo Fukumoto, Yoshimi Suzuki,
- Abstract summary: This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
- Score: 3.7623606729515133
- License:
- Abstract: Large language models (LLMs) have demonstrated prominent reasoning capabilities in recommendation tasks by transforming them into text-generation tasks. However, existing approaches either disregard or ineffectively model the user-item high-order interactions. To this end, this paper presents an enhanced LLM-based recommender (ELMRec). We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations, without requiring graph pre-training. This finding may inspire endeavors to incorporate rich knowledge graphs into LLM-based recommenders via whole-word embedding. We also found that LLMs often recommend items based on users' earlier interactions rather than recent ones, and present a reranking solution. Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
Related papers
- RLRF4Rec: Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking [33.54698201942643]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains.
This paper introduces RLRF4Rec, a novel framework integrating Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking.
arXiv Detail & Related papers (2024-10-08T11:42:37Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR)
We propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations.
arXiv Detail & Related papers (2024-03-25T05:12:18Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
We propose a two-stage framework using large language models for ranking-based recommendation (LlamaRec)
In particular, we use small-scale sequential recommenders to retrieve candidates based on the user interaction history.
LlamaRec consistently achieves datasets superior performance in both recommendation performance and efficiency.
arXiv Detail & Related papers (2023-10-25T06:23:48Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
Large language models (LLMs) have showcased their ability to harness commonsense knowledge and reasoning.
Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning.
This study introduces a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations.
arXiv Detail & Related papers (2023-07-24T18:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.