Deep Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions
- URL: http://arxiv.org/abs/2504.11673v4
- Date: Mon, 14 Jul 2025 22:24:48 GMT
- Title: Deep Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions
- Authors: Minwoo Kang, Suhong Moon, Seung Hyeong Lee, Ayush Raj, Joseph Suh, David M. Chan,
- Abstract summary: Large language models (LLMs) are increasingly capable of simulating human behavior.<n>We propose a novel methodology for constructing virtual personas with synthetic user backstories" generated as extended, multi-turn interview transcripts.<n>Our generated backstories are longer, rich in detail, and consistent in authentically describing a singular individual.
- Score: 4.234771450043289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly capable of simulating human behavior, offering cost-effective ways to estimate user responses to various surveys and polls. However, the questions in these surveys usually reflect socially understood attitudes: the patterns of attitudes of old/young, liberal/conservative, as understood by both members and non-members of those groups. It is not clear whether the LLM binding is \emph{deep}, meaning the LLM answers as a member of a particular in-group would, or \emph{shallow}, meaning the LLM responds as an out-group member believes an in-group member would. To explore this difference, we use questions that expose known in-group/out-group biases. This level of fidelity is critical for applying LLMs to various political science studies, including timely topics on polarization dynamics, inter-group conflict, and democratic backsliding. To this end, we propose a novel methodology for constructing virtual personas with synthetic user ``backstories" generated as extended, multi-turn interview transcripts. Our generated backstories are longer, rich in detail, and consistent in authentically describing a singular individual, compared to previous methods. We show that virtual personas conditioned on our backstories closely replicate human response distributions (up to an 87\% improvement as measured by Wasserstein Distance) and produce effect sizes that closely match those observed in the original studies of in-group/out-group biases. Altogether, our work extends the applicability of LLMs beyond estimating socially understood responses, enabling their use in a broader range of human studies.
Related papers
- The Prompt Makes the Person(a): A Systematic Evaluation of Sociodemographic Persona Prompting for Large Language Models [3.2919397230854983]
We show how different persona prompt strategies, specifically role adoption formats and demographic priming strategies, influence large language models.<n>Our findings show that LLMs struggle to simulate marginalized groups, particularly nonbinary, Hispanic, and Middle Eastern identities.<n>Specifically, we find that prompting in an interview-style format and name-based priming can help reduce stereotyping and improve alignment.
arXiv Detail & Related papers (2025-07-21T21:23:29Z) - Arbiters of Ambivalence: Challenges of Using LLMs in No-Consensus Tasks [52.098988739649705]
This study examines the biases and limitations of LLMs in three roles: answer generator, judge, and debater.<n>We develop a no-consensus'' benchmark by curating examples that encompass a variety of a priori ambivalent scenarios.<n>Our results show that while LLMs can provide nuanced assessments when generating open-ended answers, they tend to take a stance on no-consensus topics when employed as judges or debaters.
arXiv Detail & Related papers (2025-05-28T01:31:54Z) - Multi-turn Evaluation of Anthropomorphic Behaviours in Large Language Models [26.333097337393685]
The tendency of users to anthropomorphise large language models (LLMs) is of growing interest to AI developers, researchers, and policy-makers.
Here, we present a novel method for empirically evaluating anthropomorphic LLM behaviours in realistic and varied settings.
First, we develop a multi-turn evaluation of 14 anthropomorphic behaviours.
Second, we present a scalable, automated approach by employing simulations of user interactions.
Third, we conduct an interactive, large-scale human subject study (N=1101) to validate that the model behaviours we measure predict real users' anthropomorphic perceptions.
arXiv Detail & Related papers (2025-02-10T22:09:57Z) - Algorithmic Fidelity of Large Language Models in Generating Synthetic German Public Opinions: A Case Study [23.458234676060716]
This study investigates the algorithmic fidelity of large language models (LLMs)<n>We prompt different LLMs to generate synthetic public opinions reflective of German subpopulations by incorporating demographic features into the persona prompts.<n>Our results show that Llama performs better than other LLMs at representing subpopulations, particularly when there is lower opinion diversity within those groups.
arXiv Detail & Related papers (2024-12-17T18:46:32Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion [45.84205238554709]
We generate a synthetic sample of personas matching the individual characteristics of the 2017 German Longitudinal Election Study respondents.
We ask the LLM GPT-3.5 to predict each respondent's vote choice and compare these predictions to the survey-based estimates.
We find that GPT-3.5 does not predict citizens' vote choice accurately, exhibiting a bias towards the Green and Left parties.
arXiv Detail & Related papers (2024-07-11T14:52:18Z) - Virtual Personas for Language Models via an Anthology of Backstories [5.2112564466740245]
"Anthology" is a method for conditioning large language models to particular virtual personas by harnessing open-ended life narratives.
We show that our methodology enhances the consistency and reliability of experimental outcomes while ensuring better representation of diverse sub-populations.
arXiv Detail & Related papers (2024-07-09T06:11:18Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
The recent surge of versatile large language models (LLMs) largely depends on aligning increasingly capable foundation models with human intentions by preference learning.
This survey covers the sources and formats of preference feedback, the modeling and usage of preference signals, as well as the evaluation of the aligned LLMs.
arXiv Detail & Related papers (2024-06-17T03:52:51Z) - Scaling Data Diversity for Fine-Tuning Language Models in Human Alignment [84.32768080422349]
Alignment with human preference prevents large language models from generating misleading or toxic content.
We propose a new formulation of prompt diversity, implying a linear correlation with the final performance of LLMs after fine-tuning.
arXiv Detail & Related papers (2024-03-17T07:08:55Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
Large language models (LLMs) are known to generate biased responses where the opinions of certain groups and populations are underrepresented.
Here, we present a novel approach to achieve controllable generation of specific viewpoints using LLMs.
arXiv Detail & Related papers (2023-11-08T19:01:13Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
We investigate the extent to which large language models (LLMs) reflect human response biases, if at all.
We design a dataset and framework to evaluate whether LLMs exhibit human-like response biases in survey questionnaires.
Our comprehensive evaluation of nine models shows that popular open and commercial LLMs generally fail to reflect human-like behavior.
arXiv Detail & Related papers (2023-11-07T15:40:43Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
This paper investigates bias along less-studied but still consequential, dimensions, such as age and beauty.
We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the "what is beautiful is good" bias found in people in experimental psychology.
arXiv Detail & Related papers (2023-09-16T07:07:04Z) - Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural
Language Generation [68.9440575276396]
This survey aims to provide an overview of the recent research that has leveraged human feedback to improve natural language generation.
First, we introduce an encompassing formalization of feedback, and identify and organize existing research into a taxonomy following this formalization.
Second, we discuss how feedback can be described by its format and objective, and cover the two approaches proposed to use feedback (either for training or decoding): directly using the feedback or training feedback models.
Third, we provide an overview of the nascent field of AI feedback, which exploits large language models to make judgments based on a set of principles and minimize the need for
arXiv Detail & Related papers (2023-05-01T17:36:06Z) - Out of One, Many: Using Language Models to Simulate Human Samples [3.278541277919869]
We show that the "algorithmic bias" within one such tool -- the GPT-3 language model -- is both fine-grained and demographically correlated.
We create "silicon samples" by conditioning the model on thousands of socio-demographic backstories from real human participants.
arXiv Detail & Related papers (2022-09-14T19:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.