Non-uniform Point Cloud Upsampling via Local Manifold Distribution
- URL: http://arxiv.org/abs/2504.11701v1
- Date: Wed, 16 Apr 2025 01:54:33 GMT
- Title: Non-uniform Point Cloud Upsampling via Local Manifold Distribution
- Authors: Yaohui Fang, Xingce Wang,
- Abstract summary: We propose a novel approach to point cloud upsampling by imposing constraints from the perspective of manifold distributions.<n>We show that our method generates higher-quality and more uniformly distributed dense point clouds when processing sparse and non-uniform inputs.
- Score: 3.882709754150705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing learning-based point cloud upsampling methods often overlook the intrinsic data distribution charac?teristics of point clouds, leading to suboptimal results when handling sparse and non-uniform point clouds. We propose a novel approach to point cloud upsampling by imposing constraints from the perspective of manifold distributions. Leveraging the strong fitting capability of Gaussian functions, our method employs a network to iteratively optimize Gaussian components and their weights, accurately representing local manifolds. By utilizing the probabilistic distribution properties of Gaussian functions, we construct a unified statistical manifold to impose distribution constraints on the point cloud. Experimental results on multiple datasets demonstrate that our method generates higher-quality and more uniformly distributed dense point clouds when processing sparse and non-uniform inputs, outperforming state-of-the-art point cloud upsampling techniques.
Related papers
- Efficient Point Clouds Upsampling via Flow Matching [16.948354780275388]
Existing diffusion models struggle with inefficiencies as they map Gaussian noise to real point clouds.<n>We propose PUFM, a flow matching approach to directly map sparse point clouds to their high-fidelity dense counterparts.<n>Our method delivers superior upsampling quality but with fewer sampling steps.
arXiv Detail & Related papers (2025-01-25T17:50:53Z) - PLATYPUS: Progressive Local Surface Estimator for Arbitrary-Scale Point Cloud Upsampling [7.967279361937874]
3D point clouds are increasingly vital for applications like autonomous driving and robotics.
Point cloud upsampling is essential for improving density and uniformity.
We introduce the Progressive Local Surface Estimator (PLSE), which more effectively captures local features in complex regions.
arXiv Detail & Related papers (2024-11-01T07:56:56Z) - Enhancing Diffusion-based Point Cloud Generation with Smoothness Constraint [5.140589325829964]
Diffusion models have been popular for point cloud generation tasks.
We propose incorporating the local smoothness constraint into the diffusion framework for point cloud generation.
Experiments demonstrate the proposed model can generate realistic shapes and smoother point clouds, outperforming multiple state-of-the-art methods.
arXiv Detail & Related papers (2024-04-03T01:55:15Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
We design a novel sparse latent point diffusion model for mesh generation.
Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead.
Our proposed sparse latent point diffusion model achieves superior performance in terms of generation quality and controllability.
arXiv Detail & Related papers (2023-03-14T14:25:29Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.