PLATYPUS: Progressive Local Surface Estimator for Arbitrary-Scale Point Cloud Upsampling
- URL: http://arxiv.org/abs/2411.00432v1
- Date: Fri, 01 Nov 2024 07:56:56 GMT
- Title: PLATYPUS: Progressive Local Surface Estimator for Arbitrary-Scale Point Cloud Upsampling
- Authors: Donghyun Kim, Hyeonkyeong Kwon, Yumin Kim, Seong Jae Hwang,
- Abstract summary: 3D point clouds are increasingly vital for applications like autonomous driving and robotics.
Point cloud upsampling is essential for improving density and uniformity.
We introduce the Progressive Local Surface Estimator (PLSE), which more effectively captures local features in complex regions.
- Score: 7.967279361937874
- License:
- Abstract: 3D point clouds are increasingly vital for applications like autonomous driving and robotics, yet the raw data captured by sensors often suffer from noise and sparsity, creating challenges for downstream tasks. Consequently, point cloud upsampling becomes essential for improving density and uniformity, with recent approaches showing promise by projecting randomly generated query points onto the underlying surface of sparse point clouds. However, these methods often result in outliers, non-uniformity, and difficulties in handling regions with high curvature and intricate structures. In this work, we address these challenges by introducing the Progressive Local Surface Estimator (PLSE), which more effectively captures local features in complex regions through a curvature-based sampling technique that selectively targets high-curvature areas. Additionally, we incorporate a curriculum learning strategy that leverages the curvature distribution within the point cloud to naturally assess the sample difficulty, enabling curriculum learning on point cloud data for the first time. The experimental results demonstrate that our approach significantly outperforms existing methods, achieving high-quality, dense point clouds with superior accuracy and detail.
Related papers
- Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
We propose an arbitrary-scale Point cloud Upsampling framework using Voxel-based Network (textbfPU-VoxelNet)
Thanks to the completeness and regularity inherited from the voxel representation, voxel-based networks are capable of providing predefined grid space to approximate 3D surface.
A density-guided grid resampling method is developed to generate high-fidelity points while effectively avoiding sampling outliers.
arXiv Detail & Related papers (2024-03-08T07:31:14Z) - Mitigating Prior Shape Bias in Point Clouds via Differentiable Center Learning [19.986150101882217]
We introduce a novel solution called the Differentiable Center Sampling Network (DCS-Net)
It tackles the information leakage problem by incorporating both global feature reconstruction and local feature reconstruction as non-trivial proxy tasks.
Experimental results demonstrate that our method enhances the expressive capacity of existing point cloud models.
arXiv Detail & Related papers (2024-02-03T08:58:23Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
We design a novel sparse latent point diffusion model for mesh generation.
Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead.
Our proposed sparse latent point diffusion model achieves superior performance in terms of generation quality and controllability.
arXiv Detail & Related papers (2023-03-14T14:25:29Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - "Zero Shot" Point Cloud Upsampling [4.737519767218666]
We present an unsupervised approach to upsample point clouds internally referred as "Zero Shot" Point Cloud Upsampling (ZSPU) at holistic level.
Our approach is solely based on the internal information provided by a particular point cloud without patching in both self-training and testing phases.
ZSPU achieves superior qualitative results on shapes with complex local details or high curvatures.
arXiv Detail & Related papers (2021-06-25T17:06:18Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.