Dynamics and Computational Principles of Echo State Networks: A Mathematical Perspective
- URL: http://arxiv.org/abs/2504.11757v1
- Date: Wed, 16 Apr 2025 04:28:05 GMT
- Title: Dynamics and Computational Principles of Echo State Networks: A Mathematical Perspective
- Authors: Pradeep Singh, Ashutosh Kumar, Sutirtha Ghosh, Hrishit B P, Balasubramanian Raman,
- Abstract summary: Reservoir computing (RC) represents a class of state-space models (SSMs) characterized by a fixed state transition mechanism (the reservoir) and a flexible readout layer that maps from the state space.<n>This work presents a systematic exploration of RC, addressing its foundational properties such as the echo state property, fading memory, and reservoir capacity through the lens of dynamical systems theory.<n>We formalize the interplay between input signals and reservoir states, demonstrating the conditions under which reservoirs exhibit stability and expressive power.
- Score: 13.135043580306224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reservoir computing (RC) represents a class of state-space models (SSMs) characterized by a fixed state transition mechanism (the reservoir) and a flexible readout layer that maps from the state space. It is a paradigm of computational dynamical systems that harnesses the transient dynamics of high-dimensional state spaces for efficient processing of temporal data. Rooted in concepts from recurrent neural networks, RC achieves exceptional computational power by decoupling the training of the dynamic reservoir from the linear readout layer, thereby circumventing the complexities of gradient-based optimization. This work presents a systematic exploration of RC, addressing its foundational properties such as the echo state property, fading memory, and reservoir capacity through the lens of dynamical systems theory. We formalize the interplay between input signals and reservoir states, demonstrating the conditions under which reservoirs exhibit stability and expressive power. Further, we delve into the computational trade-offs and robustness characteristics of RC architectures, extending the discussion to their applications in signal processing, time-series prediction, and control systems. The analysis is complemented by theoretical insights into optimization, training methodologies, and scalability, highlighting open challenges and potential directions for advancing the theoretical underpinnings of RC.
Related papers
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Reservoir Computing Generalized [0.0]
A physical neural network (PNN) has the strong potential to solve machine learning tasks and physical properties, such as high-speed computation and energy efficiency.<n> Reservoir computing (RC) is an excellent framework for implementing an information processing system with a dynamical system.<n>We propose a novel framework called reservoir computing (GRC) by turning this requirement on its head, making conventional RC a special case.
arXiv Detail & Related papers (2024-11-23T05:02:47Z) - A Survey on Reservoir Computing and its Interdisciplinary Applications
Beyond Traditional Machine Learning [17.865755866792643]
Reservoir computing (RC) is a recurrent neural network in which neurons are randomly connected.
The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate responses.
RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations.
arXiv Detail & Related papers (2023-07-27T05:20:20Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Ensemble Reservoir Computing for Dynamical Systems: Prediction of
Phase-Space Stable Region for Hadron Storage Rings [0.0]
Echo State Networks (ESN) are a class of recurrent neural networks that are computationally effective.
We present the performance reached by ESN based on the prediction of the phase-space stability region.
We observe that the proposed ESN approach is capable of effectively predicting the time evolution of the extent of the dynamic aperture.
arXiv Detail & Related papers (2023-01-17T10:29:07Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Accelerated Continuous-Time Approximate Dynamic Programming via
Data-Assisted Hybrid Control [0.0]
We introduce an algorithm that incorporates dynamic momentum in actor-critic structures to control continuous-time dynamic plants with an affine structure in the input.
By incorporating dynamic momentum in our algorithm, we are able to accelerate the convergence properties of the closed-loop system.
arXiv Detail & Related papers (2022-04-27T05:36:51Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Input-to-State Representation in linear reservoirs dynamics [15.491286626948881]
Reservoir computing is a popular approach to design recurrent neural networks.
The working principle of these networks is not fully understood.
A novel analysis of the dynamics of such networks is proposed.
arXiv Detail & Related papers (2020-03-24T00:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.