DART: Disease-aware Image-Text Alignment and Self-correcting Re-alignment for Trustworthy Radiology Report Generation
- URL: http://arxiv.org/abs/2504.11786v1
- Date: Wed, 16 Apr 2025 05:39:08 GMT
- Title: DART: Disease-aware Image-Text Alignment and Self-correcting Re-alignment for Trustworthy Radiology Report Generation
- Authors: Sang-Jun Park, Keun-Soo Heo, Dong-Hee Shin, Young-Han Son, Ji-Hye Oh, Tae-Eui Kam,
- Abstract summary: We propose a Disease-aware image-text Alignment and self-correcting Re-alignment for Trustworthy radiology report generation (DART) framework.<n>Our proposed framework achieves state-of-the-art results on two widely used benchmarks, surpassing previous approaches in both report generation and clinical efficacy metrics.
- Score: 2.9390507641602364
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The automatic generation of radiology reports has emerged as a promising solution to reduce a time-consuming task and accurately capture critical disease-relevant findings in X-ray images. Previous approaches for radiology report generation have shown impressive performance. However, there remains significant potential to improve accuracy by ensuring that retrieved reports contain disease-relevant findings similar to those in the X-ray images and by refining generated reports. In this study, we propose a Disease-aware image-text Alignment and self-correcting Re-alignment for Trustworthy radiology report generation (DART) framework. In the first stage, we generate initial reports based on image-to-text retrieval with disease-matching, embedding both images and texts in a shared embedding space through contrastive learning. This approach ensures the retrieval of reports with similar disease-relevant findings that closely align with the input X-ray images. In the second stage, we further enhance the initial reports by introducing a self-correction module that re-aligns them with the X-ray images. Our proposed framework achieves state-of-the-art results on two widely used benchmarks, surpassing previous approaches in both report generation and clinical efficacy metrics, thereby enhancing the trustworthiness of radiology reports.
Related papers
- Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - ICON: Improving Inter-Report Consistency in Radiology Report Generation via Lesion-aware Mixup Augmentation [14.479606737135045]
We propose ICON, which improves the inter-report consistency of radiology report generation.
Our approach first involves extracting lesions from input images and examining their characteristics.
Then, we introduce a lesion-aware mixup technique to ensure that the representations of the semantically equivalent lesions align with the same attributes.
arXiv Detail & Related papers (2024-02-20T09:13:15Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - Multimodal Image-Text Matching Improves Retrieval-based Chest X-Ray
Report Generation [3.6664023341224827]
Contrastive X-Ray REport Match (X-REM) is a novel retrieval-based radiology report generation module.
X-REM uses an image-text matching score to measure the similarity of a chest X-ray image and radiology report for report retrieval.
arXiv Detail & Related papers (2023-03-29T04:00:47Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
Radiology report generation aims at generating descriptive text from radiology images automatically.
A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss.
We propose a novel weakly supervised contrastive loss for medical report generation.
arXiv Detail & Related papers (2021-09-25T00:06:23Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
Report generation for medical imaging promises to reduce workload and assist diagnosis in clinical practice.
Recent work has shown that deep learning models can successfully caption natural images.
We propose variational topic inference for automatic report generation.
arXiv Detail & Related papers (2021-07-15T13:34:38Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z) - When Radiology Report Generation Meets Knowledge Graph [17.59749125131158]
The accuracy of positive disease keyword mentions is critical in radiology image reporting.
The evaluation of reporting quality should focus more on matching the disease keywords and their associated attributes.
We propose a new evaluation metric for radiology image reporting with the assistance of the same composed graph.
arXiv Detail & Related papers (2020-02-19T16:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.