TextDiffSeg: Text-guided Latent Diffusion Model for 3d Medical Images Segmentation
- URL: http://arxiv.org/abs/2504.11825v1
- Date: Wed, 16 Apr 2025 07:17:36 GMT
- Title: TextDiffSeg: Text-guided Latent Diffusion Model for 3d Medical Images Segmentation
- Authors: Kangbo Ma,
- Abstract summary: Text-guided diffusion model framework, TextDiffSeg, integrates 3D volumetric data with natural language descriptions.<n>By enhancing the model's ability to recognize complex anatomical structures, TextDiffSeg incorporates innovative label embedding techniques.<n> Experimental results demonstrate that TextDiffSeg consistently outperforms existing methods in segmentation tasks involving kidney and pancreas tumors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Probabilistic Models (DPMs) have demonstrated significant potential in 3D medical image segmentation tasks. However, their high computational cost and inability to fully capture global 3D contextual information limit their practical applications. To address these challenges, we propose a novel text-guided diffusion model framework, TextDiffSeg. This method leverages a conditional diffusion framework that integrates 3D volumetric data with natural language descriptions, enabling cross-modal embedding and establishing a shared semantic space between visual and textual modalities. By enhancing the model's ability to recognize complex anatomical structures, TextDiffSeg incorporates innovative label embedding techniques and cross-modal attention mechanisms, effectively reducing computational complexity while preserving global 3D contextual integrity. Experimental results demonstrate that TextDiffSeg consistently outperforms existing methods in segmentation tasks involving kidney and pancreas tumors, as well as multi-organ segmentation scenarios. Ablation studies further validate the effectiveness of key components, highlighting the synergistic interaction between text fusion, image feature extractor, and label encoder. TextDiffSeg provides an efficient and accurate solution for 3D medical image segmentation, showcasing its broad applicability in clinical diagnosis and treatment planning.
Related papers
- MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - A Multimodal Approach Combining Structural and Cross-domain Textual Guidance for Weakly Supervised OCT Segmentation [12.948027961485536]
We propose a novel Weakly Supervised Semantic (WSSS) approach that integrates structural guidance with text-driven strategies to generate high-quality pseudo labels.
Our method achieves state-of-the-art performance, highlighting its potential to improve diagnostic accuracy and efficiency in medical imaging.
arXiv Detail & Related papers (2024-11-19T16:20:27Z) - Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing [14.0825980706386]
Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision.
In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for 3D medical image segmentation.
The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric-mixer to capture the global dependencies at low-resolution feature representations.
arXiv Detail & Related papers (2024-10-20T11:08:38Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - Enhancing Label-efficient Medical Image Segmentation with Text-guided Diffusion Models [5.865983529245793]
TextDiff improves semantic representation through inexpensive medical text annotations.
We show that TextDiff is significantly superior to the state-of-the-art multi-modal segmentation methods with only a few training samples.
arXiv Detail & Related papers (2024-07-07T10:21:08Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
Single source domain generalization holds promise for more reliable and consistent image segmentation across real-world clinical settings.
We propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features.
Our approach achieves favorable performance against existing methods in literature.
arXiv Detail & Related papers (2024-04-01T17:48:15Z) - GuideGen: A Text-Guided Framework for Full-torso Anatomy and CT Volume Generation [1.138481191622247]
GuideGen is a controllable framework that generates anatomical masks and corresponding CT volumes for the entire torso-from chest to pelvis-based on free-form text prompts.
Our approach includes three core components: a text-conditional semantic synthesizer for creating realistic full-torso anatomies; a contrast-aware autoencoder for detailed, high-fidelity feature extraction across varying contrast levels; and a latent feature generator that ensures alignment between CT images, anatomical semantics and input prompts.
arXiv Detail & Related papers (2024-03-12T02:09:39Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - MedSyn: Text-guided Anatomy-aware Synthesis of High-Fidelity 3D CT Images [22.455833806331384]
This paper introduces an innovative methodology for producing high-quality 3D lung CT images guided by textual information.
Current state-of-the-art approaches are limited to low-resolution outputs and underutilize radiology reports' abundant information.
arXiv Detail & Related papers (2023-10-05T14:16:22Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.