Support is All You Need for Certified VAE Training
- URL: http://arxiv.org/abs/2504.11831v2
- Date: Sun, 27 Apr 2025 04:00:28 GMT
- Title: Support is All You Need for Certified VAE Training
- Authors: Changming Xu, Debangshu Banerjee, Deepak Vasisht, Gagandeep Singh,
- Abstract summary: Variational Autoencoders (VAEs) have become increasingly popular and deployed in safety-critical applications.<n>We propose a novel method, CIVET, for certified training of VAEs.
- Score: 7.406988112174778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Autoencoders (VAEs) have become increasingly popular and deployed in safety-critical applications. In such applications, we want to give certified probabilistic guarantees on performance under adversarial attacks. We propose a novel method, CIVET, for certified training of VAEs. CIVET depends on the key insight that we can bound worst-case VAE error by bounding the error on carefully chosen support sets at the latent layer. We show this point mathematically and present a novel training algorithm utilizing this insight. We show in an extensive evaluation across different datasets (in both the wireless and vision application areas), architectures, and perturbation magnitudes that our method outperforms SOTA methods achieving good standard performance with strong robustness guarantees.
Related papers
- Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.
Existing research predominantly concentrates on the security of general large language models.
This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery [53.08822154199948]
Unsupervised Environment Design (UED) methods have gained recent attention as their adaptive curricula promise to enable agents to be robust to in- and out-of-distribution tasks.
This work investigates how existing UED methods select training environments, focusing on task prioritisation metrics.
We develop a method that directly trains on scenarios with high learnability.
arXiv Detail & Related papers (2024-08-27T14:31:54Z) - Cross-Input Certified Training for Universal Perturbations [4.456428506059651]
Current certified training methods train models robust to single-input perturbations but achieve suboptimal clean and UAP accuracy.
We propose a novel method, CITRUS, for certified training of networks robust against UAP attackers.
We show in an extensive evaluation across different datasets, architectures, and perturbation magnitudes that our method outperforms traditional certified training methods on standard accuracy (up to 10.3%) and achieves SOTA performance on the more practical certified UAP accuracy metric.
arXiv Detail & Related papers (2024-05-15T08:33:41Z) - SURE: SUrvey REcipes for building reliable and robust deep networks [12.268921703825258]
In this paper, we revisit techniques for uncertainty estimation within deep neural networks and consolidate a suite of techniques to enhance their reliability.
We rigorously evaluate SURE against the benchmark of failure prediction, a critical testbed for uncertainty estimation efficacy.
When applied to real-world challenges, such as data corruption, label noise, and long-tailed class distribution, SURE exhibits remarkable robustness, delivering results that are superior or on par with current state-of-the-art specialized methods.
arXiv Detail & Related papers (2024-03-01T13:58:19Z) - Adaptive Testing Environment Generation for Connected and Automated
Vehicles with Dense Reinforcement Learning [7.6589102528398065]
We develop an adaptive testing environment that bolsters evaluation robustness by incorporating multiple surrogate models.
We propose the dense reinforcement learning method and devise a new adaptive policy with high sample efficiency.
arXiv Detail & Related papers (2024-02-29T15:42:33Z) - Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing [87.48628403354351]
certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions.
Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty.
We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components.
arXiv Detail & Related papers (2024-02-13T11:59:43Z) - Empirically Validating Conformal Prediction on Modern Vision
Architectures Under Distribution Shift and Long-tailed Data [18.19171031755595]
Conformal prediction has emerged as a rigorous means of providing deep learning models with reliable uncertainty estimates and safety guarantees.
Here, we characterize the performance of several post-hoc and training-based conformal prediction methods under distribution shifts and long-tailed class distributions.
We show that across numerous conformal methods and neural network families, performance greatly degrades under distribution shifts violating safety guarantees.
arXiv Detail & Related papers (2023-07-03T15:08:28Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Certified Interpretability Robustness for Class Activation Mapping [77.58769591550225]
We present CORGI, short for Certifiably prOvable Robustness Guarantees for Interpretability mapping.
CORGI is an algorithm that takes in an input image and gives a certifiable lower bound for the robustness of its CAM interpretability map.
We show the effectiveness of CORGI via a case study on traffic sign data, certifying lower bounds on the minimum adversarial perturbation.
arXiv Detail & Related papers (2023-01-26T18:58:11Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - CROP: Certifying Robust Policies for Reinforcement Learning through
Functional Smoothing [41.093241772796475]
We present the first framework of Certifying Robust Policies for reinforcement learning (CROP) against adversarial state perturbations.
We propose two types of robustness certification criteria: robustness of per-state actions and lower bound of cumulative rewards.
arXiv Detail & Related papers (2021-06-17T07:58:32Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.