Synthetic Data for Blood Vessel Network Extraction
- URL: http://arxiv.org/abs/2504.11858v1
- Date: Wed, 16 Apr 2025 08:29:46 GMT
- Title: Synthetic Data for Blood Vessel Network Extraction
- Authors: Joël Mathys, Andreas Plesner, Jorel Elmiger, Roger Wattenhofer,
- Abstract summary: Blood vessel networks in the brain play a crucial role in stroke research, where understanding their topology is essential.<n> extracting detailed topological vessel network information from microscopy data remains a significant challenge.<n>This work combines synthetic data generation with deep learning to automatically extract vessel networks as graphs from volumetric microscopy data.
- Score: 18.95453617434051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blood vessel networks in the brain play a crucial role in stroke research, where understanding their topology is essential for analyzing blood flow dynamics. However, extracting detailed topological vessel network information from microscopy data remains a significant challenge, mainly due to the scarcity of labeled training data and the need for high topological accuracy. This work combines synthetic data generation with deep learning to automatically extract vessel networks as graphs from volumetric microscopy data. To combat data scarcity, we introduce a comprehensive pipeline for generating large-scale synthetic datasets that mirror the characteristics of real vessel networks. Our three-stage approach progresses from abstract graph generation through vessel mask creation to realistic medical image synthesis, incorporating biological constraints and imaging artifacts at each stage. Using this synthetic data, we develop a two-stage deep learning pipeline of 3D U-Net-based models for node detection and edge prediction. Fine-tuning on real microscopy data shows promising adaptation, improving edge prediction F1 scores from 0.496 to 0.626 by training on merely 5 manually labeled samples. These results suggest that automated vessel network extraction is becoming practically feasible, opening new possibilities for large-scale vascular analysis in stroke research.
Related papers
- High-Resolution Detection of Earth Structural Heterogeneities from Seismic Amplitudes using Convolutional Neural Networks with Attention layers [0.31457219084519]
We propose an efficient and cost-effective architecture for detecting seismic structural heterogeneities using Convolutional Neural Networks (CNNs) combined with Attention layers.
Our model has half the parameters compared to the state-of-the-art, and it outperforms previous methods in terms of Intersection over Union (IoU) by 0.6% and precision by 0.4%.
arXiv Detail & Related papers (2024-04-15T22:49:37Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel
Synthesis [0.879967413208593]
We present a data-driven generative framework for synthesizing blood vessel 3D geometry.
VesselVAE fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold.
We generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes.
arXiv Detail & Related papers (2023-07-07T13:35:48Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Extremely weakly-supervised blood vessel segmentation with
physiologically based synthesis and domain adaptation [7.107236806113722]
Accurate analysis and modeling of renal functions require a precise segmentation of the renal blood vessels.
Deep-learning-based methods have shown state-of-the-art performance in automatic blood vessel segmentations.
We train a generative model on unlabeled scans and simulate synthetic renal vascular trees physiologically.
We demonstrate that the model can directly segment blood vessels on real scans and validate our method on both 3D micro-CT scans of rat kidneys and a proof-of-concept experiment on 2D retinal images.
arXiv Detail & Related papers (2023-05-26T16:01:49Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
We develop a new model-based data normalization pre-processing procedure for homogenizing the sample contrast.
We demonstrate this framework's capabilities on experimental measurements of epithelial buccal cells and Caenorhabditis elegans worms.
arXiv Detail & Related papers (2021-03-29T17:43:56Z) - Learning to Segment Human Body Parts with Synthetically Trained Deep
Convolutional Networks [58.0240970093372]
This paper presents a new framework for human body part segmentation based on Deep Convolutional Neural Networks trained using only synthetic data.
The proposed approach achieves cutting-edge results without the need of training the models with real annotated data of human body parts.
arXiv Detail & Related papers (2021-02-02T12:26:50Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.