Extremely weakly-supervised blood vessel segmentation with
physiologically based synthesis and domain adaptation
- URL: http://arxiv.org/abs/2305.17054v1
- Date: Fri, 26 May 2023 16:01:49 GMT
- Title: Extremely weakly-supervised blood vessel segmentation with
physiologically based synthesis and domain adaptation
- Authors: Peidi Xu, Olga Sosnovtseva, Charlotte Mehlin S{\o}rensen, Kenny
Erleben, Sune Darkner
- Abstract summary: Accurate analysis and modeling of renal functions require a precise segmentation of the renal blood vessels.
Deep-learning-based methods have shown state-of-the-art performance in automatic blood vessel segmentations.
We train a generative model on unlabeled scans and simulate synthetic renal vascular trees physiologically.
We demonstrate that the model can directly segment blood vessels on real scans and validate our method on both 3D micro-CT scans of rat kidneys and a proof-of-concept experiment on 2D retinal images.
- Score: 7.107236806113722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate analysis and modeling of renal functions require a precise
segmentation of the renal blood vessels. Micro-CT scans provide image data at
higher resolutions, making more small vessels near the renal cortex visible.
Although deep-learning-based methods have shown state-of-the-art performance in
automatic blood vessel segmentations, they require a large amount of labeled
training data. However, voxel-wise labeling in micro-CT scans is extremely
time-consuming given the huge volume sizes. To mitigate the problem, we
simulate synthetic renal vascular trees physiologically while generating
corresponding scans of the simulated trees by training a generative model on
unlabeled scans. This enables the generative model to learn the mapping
implicitly without the need for explicit functions to emulate the image
acquisition process. We further propose an additional segmentation branch over
the generative model trained on the generated scans. We demonstrate that the
model can directly segment blood vessels on real scans and validate our method
on both 3D micro-CT scans of rat kidneys and a proof-of-concept experiment on
2D retinal images. Code and 3D results are available at
https://github.com/miccai2023anony/RenalVesselSeg
Related papers
- A label-free and data-free training strategy for vasculature segmentation in serial sectioning OCT data [4.746694624239095]
Serial sectioning Optical Coherence Tomography (s OCT) is becoming increasingly popular to study post-mortem neurovasculature.
Here, we leverage synthetic datasets of vessels to train a deep learning segmentation model.
Both approaches yield similar Dice scores, although with very different false positive and false negative rates.
arXiv Detail & Related papers (2024-05-22T15:39:31Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
Current commercial Digital Subtraction Angiography (DSA) systems typically demand hundreds of scanning views to perform reconstruction.
The dynamic blood flow and insufficient input of sparse-view DSA images present significant challenges to the 3D vessel reconstruction task.
We propose to use a time-agnostic vessel probability field to solve this problem effectively.
arXiv Detail & Related papers (2024-05-17T11:23:33Z) - Simulation-Based Segmentation of Blood Vessels in Cerebral 3D OCTA
Images [4.945556328362821]
We propose utilizing synthetic data to supervise segmentation algorithms.
We transform patches from vessel graphs into synthetic cerebral 3D OCTA images paired with their matching ground truth labels.
In extensive experiments, we demonstrate that our approach achieves competitive results.
arXiv Detail & Related papers (2024-03-11T19:14:51Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs [8.596819713822477]
We present a pipeline to synthesize large amounts of realistic OCTA images with intrinsically matching ground truth labels.
Our proposed method is based on two novel components: 1) a physiology-based simulation that models the various retinal plexuses and 2) a suite of physics-based image augmentations.
arXiv Detail & Related papers (2022-07-22T14:22:22Z) - The interpretation of endobronchial ultrasound image using 3D
convolutional neural network for differentiating malignant and benign
mediastinal lesions [3.0969191504482247]
The purpose of this study is to differentiate malignant and benign lesions by using endobronchial ultrasound (EBUS) image.
Our model is robust to noise and able to fuse various imaging features and aspiration of EBUS videos.
arXiv Detail & Related papers (2021-07-29T08:38:17Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
Brain vasculature dysfunctions such as stalled blood flow in cerebral capillaries are associated with cognitive decline and pathogenesis in Alzheimer's disease.
Here, we describe a deep learning-based approach for automatic detection of stalled capillaries in brain images based on 3D convolutional neural networks.
In this setting, our approach outperformed other methods and demonstrated state-of-the-art results, achieving 0.85 Matthews correlation coefficient, 85% sensitivity, and 99.3% specificity.
arXiv Detail & Related papers (2021-04-04T20:30:14Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.