Transferable Deployment of Semantic Edge Inference Systems via Unsupervised Domain Adaption
- URL: http://arxiv.org/abs/2504.11873v1
- Date: Wed, 16 Apr 2025 08:50:51 GMT
- Title: Transferable Deployment of Semantic Edge Inference Systems via Unsupervised Domain Adaption
- Authors: Weiqiang Jiao, Suzhi Bi, Xian Li, Cheng Guo, Hao Chen, Zhi Quan,
- Abstract summary: Inference accuracy is determined by efficient training of the feature encoder/decoder using labeled data samples.<n>Due to the difference in sensing data and communication channel distributions, deploying the system in a new environment may induce high costs in annotating data labels.<n>We propose an efficient Domain Adaptation method for Semantic Edge INference systems (DASEIN) that can maintain high inference accuracy in a new environment without the need for labeled samples.
- Score: 45.92613926374766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates deploying semantic edge inference systems for performing a common image clarification task. In particular, each system consists of multiple Internet of Things (IoT) devices that first locally encode the sensing data into semantic features and then transmit them to an edge server for subsequent data fusion and task inference. The inference accuracy is determined by efficient training of the feature encoder/decoder using labeled data samples. Due to the difference in sensing data and communication channel distributions, deploying the system in a new environment may induce high costs in annotating data labels and re-training the encoder/decoder models. To achieve cost-effective transferable system deployment, we propose an efficient Domain Adaptation method for Semantic Edge INference systems (DASEIN) that can maintain high inference accuracy in a new environment without the need for labeled samples. Specifically, DASEIN exploits the task-relevant data correlation between different deployment scenarios by leveraging the techniques of unsupervised domain adaptation and knowledge distillation. It devises an efficient two-step adaptation procedure that sequentially aligns the data distributions and adapts to the channel variations. Numerical results show that, under a substantial change in sensing data distributions, the proposed DASEIN outperforms the best-performing benchmark method by 7.09% and 21.33% in inference accuracy when the new environment has similar or 25 dB lower channel signal to noise power ratios (SNRs), respectively. This verifies the effectiveness of the proposed method in adapting both data and channel distributions in practical transfer deployment applications.
Related papers
- VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification [42.14439854721613]
We propose variational autoencoders (VAEs) for disentanglement to extract essential latent features that enable accurate classification of interferences.<n>Our proposed VAE achieves a data compression rate ranging from 512 to 8,192 and achieves an accuracy up to 99.92%.
arXiv Detail & Related papers (2025-04-14T13:38:00Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices.
In this paper, we introduce a new FLAD FedADMM based protocol.
We show that FedADMM consistently outperforms all baseline methods in terms of communication efficiency.
arXiv Detail & Related papers (2022-04-07T15:58:33Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
We introduce a Frequency Spectrum Augmentation Consistency (FSAC) framework with four different low-frequency filter operations.
In the first stage, we utilize all the original and augmented source data to train an object detector.
In the second stage, augmented source and target data with pseudo labels are adopted to perform the self-training for prediction consistency.
arXiv Detail & Related papers (2021-12-16T04:07:01Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Dispensed Transformer Network for Unsupervised Domain Adaptation [21.256375606219073]
A novel unsupervised domain adaptation (UDA) method named dispensed Transformer network (DTNet) is introduced in this paper.
Our proposed network achieves the best performance in comparison with several state-of-the-art techniques.
arXiv Detail & Related papers (2021-10-28T08:27:44Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
A low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing.
It is critical to encode the data into an informative and compact representation for low-latency inference given the limited bandwidth.
We propose a learning-based communication scheme that jointly optimize feature extraction, source coding, and channel coding.
arXiv Detail & Related papers (2021-02-08T12:53:32Z) - Collaborative Training between Region Proposal Localization and
Classification for Domain Adaptive Object Detection [121.28769542994664]
Domain adaptation for object detection tries to adapt the detector from labeled datasets to unlabeled ones for better performance.
In this paper, we are the first to reveal that the region proposal network (RPN) and region proposal classifier(RPC) demonstrate significantly different transferability when facing large domain gap.
arXiv Detail & Related papers (2020-09-17T07:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.