論文の概要: Hardware-Friendly Delayed-Feedback Reservoir for Multivariate Time-Series Classification
- arxiv url: http://arxiv.org/abs/2504.11981v1
- Date: Wed, 16 Apr 2025 11:22:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:24.434674
- Title: Hardware-Friendly Delayed-Feedback Reservoir for Multivariate Time-Series Classification
- Title(参考訳): 多変量時系列分類のためのハードウェアフレンドリーな遅延フィードバック貯留層
- Authors: Sosei Ikeda, Hiromitsu Awano, Takashi Sato,
- Abstract要約: 貯留層コンピューティングはエッジコンピューティングの機械学習技術として注目されている。
時系列分類タスクでは、貯水池を用いて得られる特徴の数は入力列の長さに依存する。
データ特徴のドット積に基づくRCのためのドット生成型貯水池表現(DPR)を提案する。
- 参考スコア(独自算出の注目度): 3.8861692690368823
- License:
- Abstract: Reservoir computing (RC) is attracting attention as a machine-learning technique for edge computing. In time-series classification tasks, the number of features obtained using a reservoir depends on the length of the input series. Therefore, the features must be converted to a constant-length intermediate representation (IR), such that they can be processed by an output layer. Existing conversion methods involve computationally expensive matrix inversion that significantly increases the circuit size and requires processing power when implemented in hardware. In this article, we propose a simple but effective IR, namely, dot-product-based reservoir representation (DPRR), for RC based on the dot product of data features. Additionally, we propose a hardware-friendly delayed-feedback reservoir (DFR) consisting of a nonlinear element and delayed feedback loop with DPRR. The proposed DFR successfully classified multivariate time series data that has been considered particularly difficult to implement efficiently in hardware. In contrast to conventional DFR models that require analog circuits, the proposed model can be implemented in a fully digital manner suitable for high-level syntheses. A comparison with existing machine-learning methods via field-programmable gate array implementation using 12 multivariate time-series classification tasks confirmed the superior accuracy and small circuit size of the proposed method.
- Abstract(参考訳): エッジコンピューティングの機械学習技術として,Reservoir Computing (RC) が注目されている。
時系列分類タスクでは、貯水池を用いて得られる特徴の数は入力列の長さに依存する。
したがって、特徴を出力層で処理できるように、定数長中間表現(IR)に変換する必要がある。
既存の変換手法には計算コストのかかる行列の逆変換が含まれており、回路サイズを大幅に増加させ、ハードウェアに実装する際には処理能力を必要とする。
本稿では,データ特徴のドット積に基づく RC のための簡易かつ効果的な DPRR (dot-product-based storage representation) を提案する。
さらに,非線形要素とDPRRによる遅延フィードバックループからなるハードウェアフレンドリーな遅延フィードバック貯水池(DFR)を提案する。
提案したDFRは,ハードウェア上での効率的な実装が特に困難であると考えられる,多変量時系列データの分類に成功している。
アナログ回路を必要とする従来のDFRモデルとは対照的に,提案モデルは高次合成に適した完全なディジタル方式で実装することができる。
12の多変量時系列分類タスクを用いたフィールドプログラマブルゲートアレイ実装による既存の機械学習手法との比較により,提案手法の精度と回路サイズが小さかった。
関連論文リスト
- ADC/DAC-Free Analog Acceleration of Deep Neural Networks with Frequency
Transformation [2.7488316163114823]
本稿では,アナログ領域の周波数ベーステンソル変換を用いた周波数領域ニューラルネットワークのエネルギー効率向上手法を提案する。
提案手法は,変換行列のトレーニング可能なパラメータを不要にすることで,よりコンパクトなセルを実現する。
16$times$16のクロスバーで8ビット入力処理を行い,Watt当たりの1602テラ演算のエネルギー効率を実現する。
論文 参考訳(メタデータ) (2023-09-04T19:19:39Z) - RegFormer: An Efficient Projection-Aware Transformer Network for
Large-Scale Point Cloud Registration [73.69415797389195]
本稿では,大規模クラウドアライメントのためのエンドツーエンドトランス (RegFormer) ネットワークを提案する。
具体的には、プロジェクション対応階層変換器を提案し、長距離依存を捕捉し、外乱をフィルタする。
我々の変圧器は線形複雑であり、大規模シーンでも高い効率が保証される。
論文 参考訳(メタデータ) (2023-03-22T08:47:37Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
本稿ではトランスフォーマーアクセラレーションのためのコヒーレントシーケンス長適応型アルゴリズム-ハードウェア共設計を提案する。
ハードウェアフレンドリーなスパースアテンション演算子と長編ハードウェアリソーススケジューリングアルゴリズムを開発した。
我々の設計は、非常に小さな精度の損失があり、CPUやGPUの実装と比較して80.2$times$と2.6$times$ Speedupがある。
論文 参考訳(メタデータ) (2022-08-07T05:48:38Z) - TransCMD: Cross-Modal Decoder Equipped with Transformer for RGB-D
Salient Object Detection [86.94578023985677]
本研究では,グローバルな情報アライメントと変革の観点から,この課題を再考する。
具体的には、トランスCMD(TransCMD)は、複数のクロスモーダル統合ユニットをカスケードして、トップダウントランスフォーマーベースの情報伝達経路を構築する。
7つのRGB-D SODベンチマークデータセットの実験結果から、単純な2ストリームエンコーダデコーダフレームワークが、最先端のCNNベースの手法を超越できることが示されている。
論文 参考訳(メタデータ) (2021-12-04T15:45:34Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Reservoir Based Edge Training on RF Data To Deliver Intelligent and
Efficient IoT Spectrum Sensors [0.6451914896767135]
本稿では,コンパクトなモバイルデバイス上での汎用機械学習アルゴリズムをサポートする処理アーキテクチャを提案する。
Deep Delay Loop Reservoir Computing (DLR)は、Stand-of-the-Art (SoA)と比較して、フォームファクタ、ハードウェアの複雑さ、レイテンシを低減します。
状態ベクトルを線形に結合した複数の小さなループからなるDLRアーキテクチャを、リッジ回帰に対する低次元入力を生成する。
論文 参考訳(メタデータ) (2021-04-01T20:08:01Z) - Reservoir-Based Distributed Machine Learning for Edge Operation [0.6451914896767135]
スマートセンサを組み込んだ機械学習アルゴリズムの現場学習のための新しい設計を紹介します。
無線周波数(RF)スペクトルセンサを用いた分散トレーニングシナリオについて述べる。
論文 参考訳(メタデータ) (2021-04-01T20:06:40Z) - Random Feature Attention [69.4671822971207]
ソフトマックス関数を近似するためにランダム特徴法を用いる線形時間空間アテンション RFA を提案する。
RFAは、従来のソフトマックスアテンションのドロップイン代替として使用することができ、オプションのゲーティング機構を通じて、遅延バイアスで直接学習する方法を提供する。
言語モデリングと機械翻訳の実験は、RFAが強力なトランスのベースラインと類似またはより良いパフォーマンスを達成することを実証します。
論文 参考訳(メタデータ) (2021-03-03T02:48:56Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Model-Size Reduction for Reservoir Computing by Concatenating Internal
States Through Time [2.6872737601772956]
Reservoir Computing(RC)は、データから複雑な時系列を非常に高速に学習できる機械学習アルゴリズムである。
エッジコンピューティングにRCを実装するためには,RCに必要な計算資源の削減が重要である。
本研究では, 貯水池の過去又は漂流状態を現時点の出力層に投入することにより, 貯水池の規模を小さくする手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T06:11:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。