Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management
- URL: http://arxiv.org/abs/2504.12023v1
- Date: Wed, 16 Apr 2025 12:28:35 GMT
- Title: Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management
- Authors: Stefano Genetti, Alberto Longobardi, Giovanni Iacca,
- Abstract summary: Supply Chain Management (SCM) faces challenges in adopting advanced optimization techniques due to the "black-box" nature of most AI-based solutions.<n>We employ an Interpretable Artificial Intelligence (IAI) approach that combines evolutionary computation with Reinforcement Learning (RL) to generate interpretable decision-making policies.<n>This IAI solution is embedded within a simulation-based optimization framework specifically designed to handle the inherent uncertainties and behaviors of modern supply chains.
- Score: 3.195234044113248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of Industry 4.0, Supply Chain Management (SCM) faces challenges in adopting advanced optimization techniques due to the "black-box" nature of most AI-based solutions, which causes reluctance among company stakeholders. To overcome this issue, in this work, we employ an Interpretable Artificial Intelligence (IAI) approach that combines evolutionary computation with Reinforcement Learning (RL) to generate interpretable decision-making policies in the form of decision trees. This IAI solution is embedded within a simulation-based optimization framework specifically designed to handle the inherent uncertainties and stochastic behaviors of modern supply chains. To our knowledge, this marks the first attempt to combine IAI with simulation-based optimization for decision-making in SCM. The methodology is tested on two supply chain optimization problems, one fictional and one from the real world, and its performance is compared against widely used optimization and RL algorithms. The results reveal that the interpretable approach delivers competitive, and sometimes better, performance, challenging the prevailing notion that there must be a trade-off between interpretability and optimization efficiency. Additionally, the developed framework demonstrates strong potential for industrial applications, offering seamless integration with various Python-based algorithms.
Related papers
- DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development.<n>We present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents.<n>We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2.
arXiv Detail & Related papers (2025-03-18T14:02:59Z) - Efficient and Scalable Deep Reinforcement Learning for Mean Field Control Games [16.62770187749295]
Mean Field Control Games (MFCGs) provide a powerful theoretical framework for analyzing systems of infinitely many interacting agents.
This paper presents a scalable deep Reinforcement Learning (RL) approach to approximate equilibrium solutions of MFCGs.
arXiv Detail & Related papers (2024-12-28T02:04:53Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Large Language Models for Combinatorial Optimization of Design Structure Matrix [4.513609458468522]
Combinatorial optimization (CO) is essential for improving efficiency and performance in engineering applications.
When it comes to real-world engineering problems, algorithms based on pure mathematical reasoning are limited and incapable to capture the contextual nuances necessary for optimization.
This study explores the potential of Large Language Models (LLMs) in solving engineering CO problems by leveraging their reasoning power and contextual knowledge.
arXiv Detail & Related papers (2024-11-19T15:39:51Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Solution to Advanced Manufacturing Process Problems using Cohort
Intelligence Algorithm with Improved Constraint Handling Approaches [0.07989135005592125]
Cohort Intelligence (CI) algorithm is a socio inspired optimization technique which is successfully applied for solving several unconstrained & constrained real-world problems from the domains such as design, manufacturing, supply chain, healthcare, etc.
arXiv Detail & Related papers (2023-10-16T05:40:23Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Constrained Combinatorial Optimization with Reinforcement Learning [0.30938904602244344]
This paper presents a framework to tackle constrained optimization problems using deep Reinforcement Learning (RL)
We extend the Neural Combinatorial Optimization (NCO) theory in order to deal with constraints in its formulation.
In that context, the solution is iteratively constructed based on interactions with the environment.
arXiv Detail & Related papers (2020-06-22T03:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.