On the calibration of Just-in-time Defect Prediction
- URL: http://arxiv.org/abs/2504.12051v1
- Date: Wed, 16 Apr 2025 13:06:20 GMT
- Title: On the calibration of Just-in-time Defect Prediction
- Authors: Xhulja Shahini, Jone Bartel, Klaus Pohl,
- Abstract summary: We evaluate the calibration of three JIT DP techniques to determine whether and to what extent they exhibit poor calibration.<n>Results reveal that all evaluated JIT DP models exhibit some level of miscalibration, with ECE ranging from 2-35%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Just in time defect prediction (JIT DP) leverages ML to identify defect-prone code commits, enabling quality assurance (QA) teams to allocate resources more efficiently by focusing on commits that are most likely to contain defects. Although JIT DP techniques have introduced improvements in terms of predictive accuracy, they are still susceptible to misclassification errors such as false positives and negatives. This can lead to wasted resources or undetected defects, a particularly critical concern when QA resources are limited. To mitigate these challenges and preserve the practical utility of JIT DP tools, it becomes essential to estimate the reliability of the predictions, i.e., computing confidence scores. Such scores can help practitioners determine the trustworthiness of predictions and thus prioritize them efficiently. A simple approach to computing confidence scores is to extract, alongside each prediction, the corresponding prediction probabilities and use them as indicators of confidence. However, for these probabilities to reliably serve as confidence scores, the predictive model must be well-calibrated. This means that the prediction probabilities must accurately represent the true likelihood of each prediction being correct. Miscalibration, common in modern ML models, distorts probability scores such that they do not align with the actual correctness probability. In this study, we evaluate the calibration of three JIT DP techniques to determine whether and to what extent they exhibit poor calibration. Furthermore, we assess whether post-calibration methods can improve the calibration of existing JIT defect prediction models. Our results reveal that all evaluated JIT DP models exhibit some level of miscalibration, with ECE ranging from 2-35%. Furthermore, post-calibration methods do not consistently improve the calibration.
Related papers
- Quantifying the Reliability of Predictions in Detection Transformers: Object-Level Calibration and Image-Level Uncertainty [6.209833978040362]
In practice, DETR generates hundreds of predictions that far outnumber the actual number of objects present in an image.
This raises the question: can we trust and use all of these predictions?
We present empirical evidence highlighting how different predictions within the same image play distinct roles, resulting in varying reliability levels.
arXiv Detail & Related papers (2024-12-02T18:34:17Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.<n>Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.<n>We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Training aims to enhance the ability of neural classifiers to estimate their uncertainty correctly.
The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted.
We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings.
arXiv Detail & Related papers (2024-05-02T11:48:14Z) - Optimizing Calibration by Gaining Aware of Prediction Correctness [30.619608580138802]
Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class.<n>We propose a new post-hoc calibration objective derived from the aim of calibration.
arXiv Detail & Related papers (2024-04-19T17:25:43Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Calibrated Uncertainty Quantification for Operator Learning via
Conformal Prediction [95.75771195913046]
We propose a risk-controlling quantile neural operator, a distribution-free, finite-sample functional calibration conformal prediction method.
We provide a theoretical calibration guarantee on the coverage rate, defined as the expected percentage of points on the function domain.
Empirical results on a 2D Darcy flow and a 3D car surface pressure prediction task validate our theoretical results.
arXiv Detail & Related papers (2024-02-02T23:43:28Z) - Two Sides of Miscalibration: Identifying Over and Under-Confidence
Prediction for Network Calibration [1.192436948211501]
Proper confidence calibration of deep neural networks is essential for reliable predictions in safety-critical tasks.
Miscalibration can lead to model over-confidence and/or under-confidence.
We introduce a novel metric, a miscalibration score, to identify the overall and class-wise calibration status.
We use the class-wise miscalibration score as a proxy to design a calibration technique that can tackle both over and under-confidence.
arXiv Detail & Related papers (2023-08-06T17:59:14Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Beyond calibration: estimating the grouping loss of modern neural
networks [68.8204255655161]
Proper scoring rule theory shows that given the calibration loss, the missing piece to characterize individual errors is the grouping loss.
We show that modern neural network architectures in vision and NLP exhibit grouping loss, notably in distribution shifts settings.
arXiv Detail & Related papers (2022-10-28T07:04:20Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
We introduce the framework of proper calibration errors, which relates every calibration error to a proper score.
This relationship can be used to reliably quantify the model calibration improvement.
arXiv Detail & Related papers (2022-03-15T12:46:08Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
We consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem.
detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions.
We propose T-Cal, a minimax test for calibration based on a de-biased plug-in estimator of the $ell$-Expected Error (ECE)
arXiv Detail & Related papers (2022-03-03T16:58:54Z) - Bayesian Confidence Calibration for Epistemic Uncertainty Modelling [4.358626952482686]
We introduce a framework to obtain confidence estimates in conjunction with an uncertainty of the calibration method.
We achieve state-of-the-art calibration performance for object detection calibration.
arXiv Detail & Related papers (2021-09-21T10:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.