論文の概要: Multilingual Contextualization of Large Language Models for Document-Level Machine Translation
- arxiv url: http://arxiv.org/abs/2504.12140v1
- Date: Wed, 16 Apr 2025 14:52:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:39:59.647887
- Title: Multilingual Contextualization of Large Language Models for Document-Level Machine Translation
- Title(参考訳): 文書レベル機械翻訳のための大規模言語モデルの多言語文脈化
- Authors: Miguel Moura Ramos, Patrick Fernandes, Sweta Agrawal, André F. T. Martins,
- Abstract要約: 大規模言語モデル (LLM) は文レベルの機械翻訳において高い性能を示している。
高品質な文書レベルのデータを対象とした微調整により,LLMに基づく長期文書翻訳を改善する手法を提案する。
提案手法は,文書から文書への直接翻訳やチャンクレベルの翻訳など,複数の翻訳パラダイムをサポートする。
- 参考スコア(独自算出の注目度): 30.005159724115824
- License:
- Abstract: Large language models (LLMs) have demonstrated strong performance in sentence-level machine translation, but scaling to document-level translation remains challenging, particularly in modeling long-range dependencies and discourse phenomena across sentences and paragraphs. In this work, we propose a method to improve LLM-based long-document translation through targeted fine-tuning on high-quality document-level data, which we curate and introduce as DocBlocks. Our approach supports multiple translation paradigms, including direct document-to-document and chunk-level translation, by integrating instructions both with and without surrounding context. This enables models to better capture cross-sentence dependencies while maintaining strong sentence-level translation performance. Experimental results show that incorporating multiple translation paradigms improves document-level translation quality and inference speed compared to prompting and agent-based methods.
- Abstract(参考訳): 大規模言語モデル(LLM)は文レベルの機械翻訳において高い性能を示してきたが、特に文や段落間の長距離依存や談話現象をモデル化する場合、文書レベルの機械翻訳へのスケーリングは依然として困難である。
本研究では,高品質な文書レベルでの微調整を目標とし,LLMに基づく長期文書翻訳を改善する手法を提案する。
本手法は,文書から文書への直接変換やチャンクレベルの翻訳など,複数の翻訳パラダイムをサポートする。
これにより、強い文レベルの翻訳性能を維持しながら、クロス文依存関係をよりよくキャプチャできる。
実験の結果,複数の翻訳パラダイムを組み込むことで,プロンプトやエージェントベースの手法に比べて文書レベルの翻訳品質と推論速度が向上することがわかった。
関連論文リスト
- Speech Translation Refinement using Large Language Models [8.602429274223693]
本稿では,大規模言語モデル(LLM)が,共同改良プロセスを導入することにより,音声翻訳の性能を向上する方法について検討する。
LLMによる音声翻訳(ST)と自動音声認識(ASR)の併用により,STモデルの性能は大幅に向上した。
7つの翻訳タスクを含む MuST-C と CoVoST 2 データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2025-01-25T05:32:42Z) - Context-Aware or Context-Insensitive? Assessing LLMs' Performance in Document-Level Translation [10.174848090916669]
大規模言語モデル(LLM)は、機械翻訳においてますます強力な競争相手となっている。
文章の外部からの文脈なしには、いくつかの単語を翻訳できない文書レベルの翻訳に焦点を当てる。
論文 参考訳(メタデータ) (2024-10-18T11:52:10Z) - DelTA: An Online Document-Level Translation Agent Based on Multi-Level Memory [96.35468670508476]
大規模言語モデル(LLM)のための文書レバレッジ翻訳エージェントであるDelTAを紹介する。
DelTAは、様々な粒度とスパンにまたがる情報を格納するマルチレベルメモリ構造を備えている。
実験結果から,DelTAは翻訳の一貫性や品質において,強いベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2024-10-10T17:30:09Z) - Enhancing Document-level Translation of Large Language Model via
Translation Mixed-instructions [24.025242477280983]
機械翻訳のための既存の大きな言語モデル(LLM)は、典型的には文レベルの翻訳命令に基づいて微調整される。
この課題は、文レベルのカバレッジの問題から生じ、文書のその後の文は転写されないままである。
様々な長さの文レベルと文書レベルの翻訳命令を微調整LLMに結合する手法を提案する。
論文 参考訳(メタデータ) (2024-01-16T03:28:26Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
大規模言語モデル(LLM)は、様々な自然言語処理タスクでかなりの成功を収めている。
ニューラルネットワーク翻訳における最先端性能は,まだ達成できていない。
直接翻訳者ではなく,自動編集者 (APE) としてLLMを適用することを提案する。
論文 参考訳(メタデータ) (2023-10-23T12:22:15Z) - Document-Level Language Models for Machine Translation [37.106125892770315]
文書レベルのモノリンガルデータを利用した文脈対応翻訳システムを構築した。
モデル組み合わせの最近の進歩を活用することで、既存のアプローチを改善します。
ほとんどのシナリオでは、バックトランスレーションは、翻訳システムを再トレーニングするコストを犠牲にして、よりよい結果をもたらす。
論文 参考訳(メタデータ) (2023-10-18T20:10:07Z) - On Search Strategies for Document-Level Neural Machine Translation [51.359400776242786]
文書レベルのニューラルネットワーク変換(NMT)モデルは、ドキュメント全体にわたってより一貫性のある出力を生成する。
そこで本研究では,デコードにおける文脈認識翻訳モデルをどのように活用するか,という質問に答えることを目的としている。
論文 参考訳(メタデータ) (2023-06-08T11:30:43Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
コンテキスト対応ニューラルネットワーク翻訳は、文書レベルのコンテキストを使用して翻訳品質を改善することを目的としている。
無関係または自明な単語は、いくつかのノイズをもたらし、モデルが現在の文と補助的な文脈の関係を学ぶのを邪魔する可能性がある。
そこで本稿では,階層的選択機構を備えたエンド・ツー・エンドのエンコーダ・デコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:07:13Z) - Modeling Context With Linear Attention for Scalable Document-Level
Translation [72.41955536834702]
本稿では,近年の文書翻訳における線形アテンションモデルの有効性について検討し,直流帰納バイアスを促進するためにセンデンシャルゲートで拡張する。
感性ゲーティングはIWSLTの翻訳品質をさらに向上させることを示す。
論文 参考訳(メタデータ) (2022-10-16T03:41:50Z) - Document-level Neural Machine Translation with Document Embeddings [82.4684444847092]
この研究は、複数の形式の文書埋め込みの観点から、詳細な文書レベルのコンテキストを活用することに重点を置いている。
提案する文書認識NMTは,大域的および局所的な文書レベルの手がかりをソース端に導入することにより,Transformerベースラインを強化するために実装されている。
論文 参考訳(メタデータ) (2020-09-16T19:43:29Z) - Towards Making the Most of Context in Neural Machine Translation [112.9845226123306]
我々は、これまでの研究がグローバルな文脈をはっきりと利用しなかったと論じている。
本研究では,各文の局所的文脈を意図的にモデル化する文書レベルNMTフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T03:30:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。