Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
- URL: http://arxiv.org/abs/2504.12210v2
- Date: Mon, 21 Apr 2025 07:27:59 GMT
- Title: Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
- Authors: Tingyang Sun, Tuan Nguyen, Ting He,
- Abstract summary: Decentralized federated learning (DFL) is a promising machine learning paradigm for bringing artificial intelligence (AI) capabilities to the network edge.<n>Running DFL on top of edge networks, however, faces severe performance challenges due to the extensive parameter exchanges between agents.<n>We jointly design the communication scheme for the overlay network formed by the agents and the mixing matrix that controls the communication demands between the agents.<n>Our evaluations show that the proposed algorithm can reduce the total training time by over $80%$ compared to the baseline.
- Score: 4.880664732766839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized federated learning (DFL) is a promising machine learning paradigm for bringing artificial intelligence (AI) capabilities to the network edge. Running DFL on top of edge networks, however, faces severe performance challenges due to the extensive parameter exchanges between agents. Most existing solutions for these challenges were based on simplistic communication models, which cannot capture the case of learning over a multi-hop bandwidth-limited network. In this work, we address this problem by jointly designing the communication scheme for the overlay network formed by the agents and the mixing matrix that controls the communication demands between the agents. By carefully analyzing the properties of our problem, we cast each design problem into a tractable optimization and develop an efficient algorithm with guaranteed performance. Our evaluations based on real topology and data show that the proposed algorithm can reduce the total training time by over $80\%$ compared to the baseline without sacrificing accuracy, while significantly improving the computational efficiency over the state of the art.
Related papers
- RESIST: Resilient Decentralized Learning Using Consensus Gradient Descent [11.22833419439317]
Empirical robustness risk (ERM) is a cornerstone of modern machine learning (ML)<n>This paper focuses on the man-in-the-middle (MITM) attack, which can cause models to deviate significantly from their intended ERM solutions.<n>We propose RESIST, an algorithm designed to be robust against adversarially compromised communication links.
arXiv Detail & Related papers (2025-02-11T21:48:10Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.<n>Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
arXiv Detail & Related papers (2024-12-21T10:18:55Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices.
Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices.
We propose a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls.
Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design.
arXiv Detail & Related papers (2024-09-29T01:48:04Z) - Overlay-based Decentralized Federated Learning in Bandwidth-limited Networks [3.9162099309900835]
Decentralized federated learning (DFL) has the promise of boosting the deployment of artificial intelligence (AI) by directly learning across distributed agents without centralized coordination.
Most existing solutions were based on the simplistic assumption that neighboring agents are physically adjacent in the underlying communication network.
We jointly design the communication demands and the communication schedule for overlay-based DFL in bandwidth-limited networks without requiring explicit cooperation from the underlying network.
arXiv Detail & Related papers (2024-08-08T18:05:11Z) - FedsLLM: Federated Split Learning for Large Language Models over Communication Networks [30.47242577997792]
This paper combines low-rank adaptation technology (LoRA) with the splitfed learning framework to propose the federated split learning for large language models (FedsLLM) framework.
The proposed algorithm reduces delays by an average of 47.63% compared to unoptimized scenarios.
arXiv Detail & Related papers (2024-07-12T13:23:54Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.