論文の概要: MOS: Towards Effective Smart Contract Vulnerability Detection through Mixture-of-Experts Tuning of Large Language Models
- arxiv url: http://arxiv.org/abs/2504.12234v1
- Date: Wed, 16 Apr 2025 16:33:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 18:06:36.381419
- Title: MOS: Towards Effective Smart Contract Vulnerability Detection through Mixture-of-Experts Tuning of Large Language Models
- Title(参考訳): MOS:大規模言語モデルの混合調整による効果的なスマートコントラクト脆弱性検出に向けて
- Authors: Hang Yuan, Lei Yu, Zhirong Huang, Jingyuan Zhang, Junyi Lu, Shiqi Cheng, Li Yang, Fengjun Zhang, Jiajia Ma, Chun Zuo,
- Abstract要約: スマートコントラクトの脆弱性は、ブロックチェーンシステムに重大なセキュリティリスクをもたらす。
本稿では,大規模言語モデルのミックス・オブ・エキスパート・チューニング(MOE-Tuning)に基づくスマートコントラクト脆弱性検出フレームワークを提案する。
実験の結果、MOSはF1のスコアが6.32%、精度が4.80%の平均的な改善で既存の手法よりも大幅に優れていた。
- 参考スコア(独自算出の注目度): 16.16186929130931
- License:
- Abstract: Smart contract vulnerabilities pose significant security risks to blockchain systems, potentially leading to severe financial losses. Existing methods face several limitations: (1) Program analysis-based approaches rely on predefined patterns, lacking flexibility for new vulnerability types; (2) Deep learning-based methods lack explanations; (3) Large language model-based approaches suffer from high false positives. We propose MOS, a smart contract vulnerability detection framework based on mixture-of-experts tuning (MOE-Tuning) of large language models. First, we conduct continual pre-training on a large-scale smart contract dataset to provide domain-enhanced initialization. Second, we construct a high-quality MOE-Tuning dataset through a multi-stage pipeline combining LLM generation and expert verification for reliable explanations. Third, we design a vulnerability-aware routing mechanism that activates the most relevant expert networks by analyzing code features and their matching degree with experts. Finally, we extend the feed-forward layers into multiple parallel expert networks, each specializing in specific vulnerability patterns. We employ a dual-objective loss function: one for optimizing detection and explanation performance, and another for ensuring reasonable distribution of vulnerability types to experts through entropy calculation. Experiments show that MOS significantly outperforms existing methods with average improvements of 6.32% in F1 score and 4.80% in accuracy. The vulnerability explanations achieve positive ratings (scores of 3-4 on a 4-point scale) of 82.96%, 85.21% and 94.58% for correctness, completeness, and conciseness through human and LLM evaluation.
- Abstract(参考訳): スマートコントラクトの脆弱性は、ブロックチェーンシステムに重大なセキュリティリスクをもたらし、深刻な財務損失につながる可能性がある。
既存の手法にはいくつかの制限がある: (1) プログラム分析に基づくアプローチは、事前定義されたパターンに依存し、新しい脆弱性タイプに対する柔軟性を欠いている; (2) 深層学習に基づく手法は説明を欠いている; 3) 大規模言語モデルに基づくアプローチは、高い偽陽性に悩む。
MOSは,大規模言語モデルのミックス・オブ・エキスパート・チューニング(MOE-Tuning)に基づくスマートコントラクト脆弱性検出フレームワークである。
まず,大規模スマートコントラクトデータセットの継続事前トレーニングを行い,ドメイン拡張初期化を実現する。
第2に、LLM生成と専門家による信頼性説明の検証を組み合わせた多段階パイプラインを用いて、高品質なMOE-Tuningデータセットを構築する。
第3に、コードの特徴とその適合度を専門家と分析することにより、最も関連性の高い専門家ネットワークを活性化する脆弱性対応ルーティング機構を設計する。
最後に、フィードフォワード層を複数の並列専門家ネットワークに拡張し、それぞれが特定の脆弱性パターンを特化しています。
本稿では,検出と説明性能を最適化するための二目的損失関数と,エントロピー計算により専門家に適切な脆弱性型分布を確保するための二目的損失関数を用いる。
実験の結果、MOSはF1のスコアが6.32%、精度が4.80%の平均的な改善で既存の手法よりも大幅に優れていた。
脆弱性の説明は82.96%、85.21%、94.58%の肯定的な評価(4点スケールで3.4のスコア)を、人間とLLMの評価による正確性、完全性、簡潔性に対して達成している。
関連論文リスト
- One-for-All Does Not Work! Enhancing Vulnerability Detection by Mixture-of-Experts (MoE) [11.69736955814315]
MoEVDは脆弱性検出をCWEタイプ分類とCWE固有の脆弱性検出という2つのタスクに分解する。
タスクを分割することで、脆弱性検出において、MoEVDは特定の専門家が1つのモデル内ですべての脆弱性を扱う代わりに、異なるタイプの脆弱性を扱うことができる。
MoEVDはほとんど全てのCWEタイプを抜いて、最高のSOTAベースラインのリコールを9%から77.8%改善している。
論文 参考訳(メタデータ) (2025-01-27T19:25:34Z) - Smart-LLaMA: Two-Stage Post-Training of Large Language Models for Smart Contract Vulnerability Detection and Explanation [21.39496709865097]
既存のスマートコントラクトの脆弱性検出方法は3つの大きな問題に直面している。
データセットの十分な品質、詳細な説明と正確な脆弱性位置の欠如。
LLaMA言語モデルに基づく高度な検出手法であるSmart-LLaMAを提案する。
論文 参考訳(メタデータ) (2024-11-09T15:49:42Z) - Enhancing Pre-Trained Language Models for Vulnerability Detection via Semantic-Preserving Data Augmentation [4.374800396968465]
本稿では,脆弱性検出のための事前学習言語モデルの性能向上を目的としたデータ拡張手法を提案する。
一連の代表的なコード事前訓練モデルの微調整に当社のデータセットを組み込むことで、最大10.1%の精度向上と23.6%のF1増加を達成することができる。
論文 参考訳(メタデータ) (2024-09-30T21:44:05Z) - Networks of Networks: Complexity Class Principles Applied to Compound AI Systems Design [63.24275274981911]
多くの言語モデル推論コールからなる複合AIシステムは、ますます採用されている。
本研究では,提案した回答の生成と正当性検証の区別を中心に,ネットワークネットワーク(NoN)と呼ばれるシステムを構築した。
我々は,Kジェネレータを備えた検証器ベースの判定器NoNを導入し,"Best-of-K"あるいは"judge-based"複合AIシステムのインスタンス化を行う。
論文 参考訳(メタデータ) (2024-07-23T20:40:37Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
包括的な脆弱性ベンチマークであるVulBenchを紹介します。
このベンチマークは、幅広いCTF課題と実世界のアプリケーションから高品質なデータを集約する。
いくつかのLSMは、脆弱性検出における従来のディープラーニングアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-21T08:20:39Z) - Large Language Model-Powered Smart Contract Vulnerability Detection: New
Perspectives [8.524720028421447]
本稿では, GPT-4 のような大規模言語モデル (LLM) を利用する機会, 課題, 潜在的な解決策を体系的に分析する。
高いランダム性でより多くの答えを生成することは、正しい答えを生み出す可能性を大幅に押し上げるが、必然的に偽陽性の数が増加する。
本稿では,GPTLens と呼ばれる,従来の一段階検出を2つの相乗的段階に分割し,生成と識別を行う逆方向のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-02T12:37:23Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。