論文の概要: SIDME: Self-supervised Image Demoiréing via Masked Encoder-Decoder Reconstruction
- arxiv url: http://arxiv.org/abs/2504.12245v1
- Date: Wed, 16 Apr 2025 16:50:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:42.433263
- Title: SIDME: Self-supervised Image Demoiréing via Masked Encoder-Decoder Reconstruction
- Title(参考訳): SIDME: Masked Encoder-Decoder 再構成による自己教師型画像復号化
- Authors: Xia Wang, Haiyang Sun, Tiantian Cao, Yueying Sun, Min Feng,
- Abstract要約: モワールパターンは、オブジェクト光信号とカメラサンプリング周波数のエイリアスから生じるもので、キャプチャ中に画質が劣化することが多い。
SIDMEはモワールパターンを効果的に処理することで高品質な視覚画像を生成するために設計された新しいモデルである。
- 参考スコア(独自算出の注目度): 6.345037597566313
- License:
- Abstract: Moir\'e patterns, resulting from aliasing between object light signals and camera sampling frequencies, often degrade image quality during capture. Traditional demoir\'eing methods have generally treated images as a whole for processing and training, neglecting the unique signal characteristics of different color channels. Moreover, the randomness and variability of moir\'e pattern generation pose challenges to the robustness of existing methods when applied to real-world data. To address these issues, this paper presents SIDME (Self-supervised Image Demoir\'eing via Masked Encoder-Decoder Reconstruction), a novel model designed to generate high-quality visual images by effectively processing moir\'e patterns. SIDME combines a masked encoder-decoder architecture with self-supervised learning, allowing the model to reconstruct images using the inherent properties of camera sampling frequencies. A key innovation is the random masked image reconstructor, which utilizes an encoder-decoder structure to handle the reconstruction task. Furthermore, since the green channel in camera sampling has a higher sampling frequency compared to red and blue channels, a specialized self-supervised loss function is designed to improve the training efficiency and effectiveness. To ensure the generalization ability of the model, a self-supervised moir\'e image generation method has been developed to produce a dataset that closely mimics real-world conditions. Extensive experiments demonstrate that SIDME outperforms existing methods in processing real moir\'e pattern data, showing its superior generalization performance and robustness.
- Abstract(参考訳): Moir\'eパターンは、オブジェクト光信号とカメラサンプリング周波数のエイリアスから生じるもので、キャプチャ中に画質が劣化することが多い。
従来のdemoir\'eing法は、画像全体を処理とトレーニングの全体として扱い、異なる色チャネルのユニークな信号特性を無視している。
さらに,moir\'eパターン生成のランダム性と変動性は,実世界のデータに適用した場合の既存手法のロバスト性に課題をもたらす。
本稿では,モワールパターンを効果的に処理して高品質な視覚画像を生成する新しいモデルであるSIDME(Self-supervised Image Demoir\'eing via Masked Encoder-Decoder Reconstruction)を提案する。
SIDMEは、マスク付きエンコーダデコーダアーキテクチャと自己教師付き学習を組み合わせることで、カメラサンプリング周波数の固有の特性を用いて画像を再構成する。
重要な革新はランダムなマスク付き画像再構成であり、エンコーダ・デコーダ構造を利用して再構成作業を処理する。
さらに、カメラサンプリングにおけるグリーンチャネルは、赤と青のチャネルと比較してサンプリング周波数が高いため、訓練効率と効率を向上させるために、特別に自己監督的損失関数が設計されている。
モデルの一般化能力を確保するために,実環境を忠実に再現したデータセットを作成するために,自己教師付きmoir\'e画像生成法を開発した。
SIDMEは実モワールパターンデータ処理において既存の手法よりも優れており,その一般化性能とロバスト性に優れていた。
関連論文リスト
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - Multi-scale Frequency Enhancement Network for Blind Image Deblurring [7.198959621445282]
視覚障害者のためのマルチスケール周波数拡張ネットワーク(MFENet)を提案する。
ぼやけた画像のマルチスケール空間およびチャネル情報をキャプチャするために,深度的に分離可能な畳み込みに基づくマルチスケール特徴抽出モジュール(MS-FE)を導入する。
提案手法は,視覚的品質と客観的評価の両指標において,優れた劣化性能を達成できることを実証する。
論文 参考訳(メタデータ) (2024-11-11T11:49:18Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder [29.924160271522354]
超解像度(SR)と画像生成はコンピュータビジョンにおいて重要なタスクであり、現実世界のアプリケーションで広く採用されている。
しかし、既存のほとんどの手法は、固定スケールの倍率でのみ画像を生成し、過度なスムーシングやアーティファクトに悩まされている。
最も関連する研究は、インプリシット神経表現(INR)をデノナイズ拡散モデルに適用し、連続分解能で多種多様で高品質なSR結果を得た。
任意のスケールで入力画像の超解像やランダムノイズから生成できる新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-15T12:45:40Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - MaskSketch: Unpaired Structure-guided Masked Image Generation [56.88038469743742]
MaskSketchは、サンプリング中の余分な条件信号としてガイドスケッチを使用して生成結果の空間的条件付けを可能にする画像生成方法である。
マスク付き生成変換器の中間自己アテンションマップが入力画像の重要な構造情報を符号化していることを示す。
以上の結果から,MaskSketchは誘導構造に対する高画像リアリズムと忠実性を実現する。
論文 参考訳(メタデータ) (2023-02-10T20:27:02Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
ニューラルデータに依存した変換を構築し,各画像の符号化効率を最適化する連続オンラインモード決定機構を導入する。
実験の結果,提案したニューラルシンタクス設計と連続オンラインモード決定機構の有効性が示された。
論文 参考訳(メタデータ) (2022-03-09T14:56:48Z) - Recursive Self-Improvement for Camera Image and Signal Processing
Pipeline [6.318974730864278]
現在のカメラ画像と信号処理パイプライン(ISP)は、画像全体に一様に適用される単一のフィルタを適用する傾向がある。
これは、ほとんどの取得したカメラ画像が空間的に異質なアーティファクトを持っているにもかかわらずである。
学習された潜在部分空間で動作する深層強化学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-15T02:23:40Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z) - Convolutional Autoencoder for Blind Hyperspectral Image Unmixing [0.0]
スペクトルアンミックス(英: spectrum unmixing)は、混合ピクセルを2つの基本的代表、すなわちエンドメンバーとアブリダンスに分解する技法である。
本稿では,ハイパースペクトル画像にブラインドアンミックスを行う新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-18T17:41:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。