Beyond Reconstruction: A Physics Based Neural Deferred Shader for Photo-realistic Rendering
- URL: http://arxiv.org/abs/2504.12273v1
- Date: Wed, 16 Apr 2025 17:32:50 GMT
- Title: Beyond Reconstruction: A Physics Based Neural Deferred Shader for Photo-realistic Rendering
- Authors: Zhuo He, Paul Henderson, Nicolas Pugeault,
- Abstract summary: This paper introduces a novel physics based neural deferred shading pipeline to decompose the data-driven rendering process.<n>We learn a generalizable shading function to produce photo-realistic results for shading and relighting tasks.<n>Our model achieves improved performance compared to classical models and a state-of-art neural shading model.
- Score: 5.653106385738823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based rendering has demonstrated major improvements for photo-realistic image synthesis, applicable to various applications including visual effects in movies and photo-realistic scene building in video games. However, a significant limitation is the difficulty of decomposing the illumination and material parameters, which limits such methods to reconstruct an input scene, without any possibility to control these parameters. This paper introduces a novel physics based neural deferred shading pipeline to decompose the data-driven rendering process, learn a generalizable shading function to produce photo-realistic results for shading and relighting tasks, we also provide a shadow estimator to efficiently mimic shadowing effect. Our model achieves improved performance compared to classical models and a state-of-art neural shading model, and enables generalizable photo-realistic shading from arbitrary illumination input.
Related papers
- EndoPBR: Material and Lighting Estimation for Photorealistic Surgical Simulations via Physically-based Rendering [1.03590082373586]
The lack of labeled datasets in 3D vision for surgical scenes inhibits the development of robust 3D reconstruction algorithms.<n>We introduce a differentiable rendering framework for material and lighting estimation from endoscopic images and known geometry.<n>By grounding color predictions in the rendering equation, we can generate photorealistic images at arbitrary camera poses.
arXiv Detail & Related papers (2025-02-28T02:50:59Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - Neural Radiance Transfer Fields for Relightable Novel-view Synthesis
with Global Illumination [63.992213016011235]
We propose a method for scene relighting under novel views by learning a neural precomputed radiance transfer function.
Our method can be solely supervised on a set of real images of the scene under a single unknown lighting condition.
Results show that the recovered disentanglement of scene parameters improves significantly over the current state of the art.
arXiv Detail & Related papers (2022-07-27T16:07:48Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z) - Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement [78.58603635621591]
Training an unpaired synthetic-to-real translation network in image space is severely under-constrained.
We propose a semi-supervised approach that operates on the disentangled shading and albedo layers of the image.
Our two-stage pipeline first learns to predict accurate shading in a supervised fashion using physically-based renderings as targets.
arXiv Detail & Related papers (2020-03-27T21:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.