論文の概要: A Comprehensive Survey of Reward Models: Taxonomy, Applications, Challenges, and Future
- arxiv url: http://arxiv.org/abs/2504.12328v1
- Date: Sat, 12 Apr 2025 16:07:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:39:08.154961
- Title: A Comprehensive Survey of Reward Models: Taxonomy, Applications, Challenges, and Future
- Title(参考訳): リワードモデルに関する総合的調査--分類学,応用,課題,未来
- Authors: Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei Zhou, Jinjie Gu, Lei Zou,
- Abstract要約: Reward Model (RM) は、Large Language Models (LLM) を向上する驚くべき可能性を実証した。
我々は、関連する研究の概要を概観し、選好収集、報酬モデリング、利用の視点を探究する。
本稿では、初心者にRMの総合的な紹介を提供し、今後の研究を促進することを目的としている。
- 参考スコア(独自算出の注目度): 26.99066977066666
- License:
- Abstract: Reward Model (RM) has demonstrated impressive potential for enhancing Large Language Models (LLM), as RM can serve as a proxy for human preferences, providing signals to guide LLMs' behavior in various tasks. In this paper, we provide a comprehensive overview of relevant research, exploring RMs from the perspectives of preference collection, reward modeling, and usage. Next, we introduce the applications of RMs and discuss the benchmarks for evaluation. Furthermore, we conduct an in-depth analysis of the challenges existing in the field and dive into the potential research directions. This paper is dedicated to providing beginners with a comprehensive introduction to RMs and facilitating future studies. The resources are publicly available at github\footnote{https://github.com/JLZhong23/awesome-reward-models}.
- Abstract(参考訳): Reward Model (RM) は,Large Language Models (LLM) が人間の嗜好のプロキシとして機能し,様々なタスクにおいて LLM の振る舞いをガイドする信号を提供するため,大きな言語モデル(LLM)を向上する驚くべき可能性を実証している。
本稿では、嗜好収集、報酬モデリング、利用の観点からRMを探索し、関連する研究の概要を概観する。
次に、RMの応用について紹介し、評価のためのベンチマークについて論じる。
さらに,フィールドに存在する課題の詳細な分析を行い,今後の研究の方向性について検討する。
本稿では、初心者にRMの総合的な紹介を提供し、今後の研究を促進することを目的としている。
リソースはgithub\footnote{https://github.com/JLZhong23/awesome-reward-models}で公開されている。
関連論文リスト
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
このチュートリアルでは、大規模言語モデル(LLM)を統合するための2つの主要なアプローチを探求する。
これは、最近の進歩、課題、潜在的研究の方向性を含む、生成的な大規模なレコメンデーションモデルの包括的な概要を提供する。
主なトピックは、データ品質、スケーリング法則、ユーザの行動マイニング、トレーニングと推論の効率性である。
論文 参考訳(メタデータ) (2025-02-19T14:48:25Z) - GUI Agents with Foundation Models: A Comprehensive Survey [91.97447457550703]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
重要な課題を特定し,今後の研究方向性を提案する。
この調査が(M)LLMベースのGUIエージェントの分野におけるさらなる進歩を促すことを願っている。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
MLLM(Multimodal Large Language Models)は、人工知能に大きな進歩をもたらした。
この調査は、4つのコアドメイン(理解、推論、生成、アプリケーション)にわたるMLLMを評価する211のベンチマークを体系的にレビューする。
論文 参考訳(メタデータ) (2024-09-21T15:22:26Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
RMR(Retrieval Meets Reasoning)と呼ばれる新しいマルチモーダルRAGフレームワークについて紹介する。
RMRフレームワークは、最も関連性の高い問合せ対を特定するために、バイモーダル検索モジュールを使用する。
これは、ベンチマークデータセットのスペクトルにわたって様々なビジョン言語モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-31T14:23:49Z) - RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing [0.2302001830524133]
本稿では,検索言語モデル (RALM) に関する総合的な概要の欠如について論じる。
本稿では、Retrievers、Language Models、Augmentationsなど、ALMの本質的なコンポーネントについて論じる。
RALMは、翻訳や対話システムから知識集約アプリケーションまで、様々なタスクにおいて有用性を示す。
論文 参考訳(メタデータ) (2024-04-30T13:14:51Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。