論文の概要: Streamlining Biomedical Research with Specialized LLMs
- arxiv url: http://arxiv.org/abs/2504.12341v1
- Date: Tue, 15 Apr 2025 06:05:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:37:26.359585
- Title: Streamlining Biomedical Research with Specialized LLMs
- Title(参考訳): 特化LDMを用いたバイオメディカルリサーチの合理化
- Authors: Linqing Chen, Weilei Wang, Yubin Xia, Wentao Wu, Peng Xu, Zilong Bai, Jie Fang, Chaobo Xu, Ran Hu, Licong Xu, Haoran Hua, Jing Sun, Hanmeng Zhong, Jin Liu, Tian Qiu, Haowen Liu, Meng Hu, Xiuwen Li, Fei Gao, Yong Gu, Tao Shi, Chaochao Wang, Jianping Lu, Cheng Sun, Yixin Wang, Shengjie Yang, Yuancheng Li, Lu Jin, Lisha Zhang, Fu Bian, Zhongkai Ye, Lidong Pei, Changyang Tu,
- Abstract要約: 本稿では,最先端のドメイン特化言語モデルと高度な情報検索技術を統合した新しいシステムを提案する。
本稿では,頑健な質問応答モデルを活用することで,応答精度を向上させるシステムの能力を示す。
- 参考スコア(独自算出の注目度): 29.084641080360207
- License:
- Abstract: In this paper, we propose a novel system that integrates state-of-the-art, domain-specific large language models with advanced information retrieval techniques to deliver comprehensive and context-aware responses. Our approach facilitates seamless interaction among diverse components, enabling cross-validation of outputs to produce accurate, high-quality responses enriched with relevant data, images, tables, and other modalities. We demonstrate the system's capability to enhance response precision by leveraging a robust question-answering model, significantly improving the quality of dialogue generation. The system provides an accessible platform for real-time, high-fidelity interactions, allowing users to benefit from efficient human-computer interaction, precise retrieval, and simultaneous access to a wide range of literature and data. This dramatically improves the research efficiency of professionals in the biomedical and pharmaceutical domains and facilitates faster, more informed decision-making throughout the R\&D process. Furthermore, the system proposed in this paper is available at https://synapse-chat.patsnap.com.
- Abstract(参考訳): 本稿では、最先端のドメイン固有言語モデルと高度な情報検索技術を統合し、包括的でコンテキスト対応の応答を提供する新しいシステムを提案する。
提案手法は多様なコンポーネント間のシームレスな相互作用を促進し,出力のクロスバリデーションにより,関連するデータや画像,テーブル,その他のモダリティに富んだ,高精度で高品質な応答を生成できる。
頑健な質問応答モデルを活用することで応答精度を向上させるシステムの性能を実証し,対話生成の質を著しく向上させる。
このシステムは、リアルタイムで高忠実なインタラクションのためのアクセス可能なプラットフォームを提供しており、ユーザーは効率的な人間とコンピュータのインタラクション、正確な検索、幅広い文献やデータへの同時アクセスの恩恵を受けることができる。
これにより、生物医学・薬学分野の専門職の研究効率が劇的に向上し、R&Dプロセス全体を通してより速く、より知的な意思決定を促進する。
さらに,本論文で提案したシステムはhttps://synapse-chat.patsnap.comで公開されている。
関連論文リスト
- Has My System Prompt Been Used? Large Language Model Prompt Membership Inference [56.20586932251531]
Prompt Detectiveは,システムプロンプトがサードパーティの言語モデルによって使用されているかどうかを確実に判断する統計手法である。
我々の研究は、システムの小さな変更でさえ、異なる応答分布に現れ、統計的に意味のある迅速な使用を検証できることを明らかにした。
論文 参考訳(メタデータ) (2025-02-14T08:00:42Z) - From large language models to multimodal AI: A scoping review on the potential of generative AI in medicine [40.23383597339471]
マルチモーダルAIは、イメージング、テキスト、構造化データを含む多様なデータモダリティを単一のモデルに統合することができる。
このスコーピングレビューは、マルチモーダルAIの進化を探求し、その方法、アプリケーション、データセット、臨床環境での評価を強調している。
診断支援,医療報告生成,薬物発見,会話型AIの革新を推進し,一過性のアプローチからマルチモーダルアプローチへのシフトを示唆した。
論文 参考訳(メタデータ) (2025-02-13T11:57:51Z) - A Proposed Large Language Model-Based Smart Search for Archive System [0.0]
本研究では,デジタルアーカイブシステムにおけるスマート検索のための新しいフレームワークを提案する。
Retrieval-Augmented Generation (RAG) アプローチを用いることで、自然言語クエリの処理を可能にする。
本稿では,システムのアーキテクチャと実装について述べるとともに,その性能を4つの実験で評価する。
論文 参考訳(メタデータ) (2025-01-13T02:53:07Z) - NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering [0.14999444543328289]
本稿では,最適化されたトピックモデリングフレームワークであるOVB-LDAとBI-POP CMA-ES最適化技術を統合し,学術文書の抽象分類を強化した新しい手法を提案する。
我々は、ドメイン固有データに基づいて微調整された蒸留MiniLMモデルを用いて、高精度な回答抽出を行う。
論文 参考訳(メタデータ) (2024-10-29T14:45:12Z) - Optimized Biomedical Question-Answering Services with LLM and Multi-BERT Integration [8.014161621363652]
本稿では,大規模言語モデル(LLM)とマルチBERT構成を統合することにより,バイオメディカル質問応答(QA)サービスを改良したアプローチを提案する。
このシステムは、大量の複雑なバイオメディカルデータを処理し、優先順位付けする能力を高めることで、医療従事者がより良い患者結果と情報提供を行うための支援を目指している。
論文 参考訳(メタデータ) (2024-10-11T17:13:31Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
ヒューマンオブジェクトインタラクション(HOI)検出は、コンピュータビジョンの課題である。
本稿では,構造化テキスト知識を組み込んだHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:52Z) - An Interactive Interpretability System for Breast Cancer Screening with
Deep Learning [11.28741778902131]
乳がん検診の放射線科医を支援するために,最先端の解釈可能性技術を活用するインタラクティブシステムを提案する。
本システムは, 深層学習モデルを放射線学者のワークフローに統合し, モデル決定プロセスの理解を促進するために, 新たなインタラクションを提供する。
論文 参考訳(メタデータ) (2022-09-30T02:19:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。