A Human-AI Comparative Analysis of Prompt Sensitivity in LLM-Based Relevance Judgment
- URL: http://arxiv.org/abs/2504.12408v1
- Date: Wed, 16 Apr 2025 18:17:19 GMT
- Title: A Human-AI Comparative Analysis of Prompt Sensitivity in LLM-Based Relevance Judgment
- Authors: Negar Arabzadeh, Charles L. A . Clarke,
- Abstract summary: Large Language Models (LLMs) are increasingly used to automate relevance judgments for information retrieval (IR) tasks.<n>To assess the robustness and reliability of LLM-based relevance judgments, we systematically investigate impact of prompt sensitivity on the task.
- Score: 15.255877686845773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are increasingly used to automate relevance judgments for information retrieval (IR) tasks, often demonstrating agreement with human labels that approaches inter-human agreement. To assess the robustness and reliability of LLM-based relevance judgments, we systematically investigate impact of prompt sensitivity on the task. We collected prompts for relevance assessment from 15 human experts and 15 LLMs across three tasks~ -- ~binary, graded, and pairwise~ -- ~yielding 90 prompts in total. After filtering out unusable prompts from three humans and three LLMs, we employed the remaining 72 prompts with three different LLMs as judges to label document/query pairs from two TREC Deep Learning Datasets (2020 and 2021). We compare LLM-generated labels with TREC official human labels using Cohen's $\kappa$ and pairwise agreement measures. In addition to investigating the impact of prompt variations on agreement with human labels, we compare human- and LLM-generated prompts and analyze differences among different LLMs as judges. We also compare human- and LLM-generated prompts with the standard UMBRELA prompt used for relevance assessment by Bing and TREC 2024 Retrieval Augmented Generation (RAG) Track. To support future research in LLM-based evaluation, we release all data and prompts at https://github.com/Narabzad/prompt-sensitivity-relevance-judgements/.
Related papers
- Leveraging LLMs as Meta-Judges: A Multi-Agent Framework for Evaluating LLM Judgments [6.270885758858811]
Large language models (LLMs) are being widely applied across various fields, but as tasks become more complex, evaluating their responses is increasingly challenging.
We propose a three-stage meta-judge selection pipeline: 1) developing a comprehensive rubric with GPT-4 and human experts, 2) using three advanced LLM agents to score judgments, and 3) applying a threshold to filter out low-scoring judgments.
Experimental results on the JudgeBench dataset show about 15.55% improvement compared to raw judgments and about 8.37% improvement over the single-agent baseline.
arXiv Detail & Related papers (2025-04-23T20:32:12Z) - Judging the Judges: A Collection of LLM-Generated Relevance Judgements [37.103230004631996]
This paper benchmarks and reports on the results of a large-scale automatic relevance judgment evaluation, the LLMJudge challenge at SIGIR 2024.<n>We release and benchmark 42 LLM-generated labels of the TREC 2023 Deep Learning track relevance judgments produced by eight international teams.
arXiv Detail & Related papers (2025-02-19T17:40:32Z) - Can LLMs Replace Human Evaluators? An Empirical Study of LLM-as-a-Judge in Software Engineering [18.766132076075365]
Large language models (LLMs) have been deployed to tackle various software engineering (SE) tasks like code generation.<n>Pass@k metric requires extensive unit tests and configured environments, and is not suitable for evaluating LLM-generated text.<n>Conventional metrics like BLEU, which measure only lexical rather than semantic similarity, have also come under scrutiny.
arXiv Detail & Related papers (2025-02-10T06:49:29Z) - A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look [52.114284476700874]
This paper reports on the results of a large-scale evaluation (the TREC 2024 RAG Track) where four different relevance assessment approaches were deployed.
We find that automatically generated UMBRELA judgments can replace fully manual judgments to accurately capture run-level effectiveness.
Surprisingly, we find that LLM assistance does not appear to increase correlation with fully manual assessments, suggesting that costs associated with human-in-the-loop processes do not bring obvious tangible benefits.
arXiv Detail & Related papers (2024-11-13T01:12:35Z) - Evaluating the Evaluator: Measuring LLMs' Adherence to Task Evaluation Instructions [18.93335792080899]
We investigate how much influence prompting the LLMs-as-a-judge has on the alignment of AI judgements to human judgements.
We aggregate a taxonomy of quality criteria commonly used across state-of-the-art evaluations with LLMs and provide this as a rigorous benchmark of models as judges.
arXiv Detail & Related papers (2024-08-16T14:49:35Z) - WikiContradict: A Benchmark for Evaluating LLMs on Real-World Knowledge Conflicts from Wikipedia [59.96425443250666]
Retrieval-augmented generation (RAG) has emerged as a promising solution to mitigate the limitations of large language models (LLMs)
In this work, we conduct a comprehensive evaluation of LLM-generated answers to questions based on contradictory passages from Wikipedia.
We benchmark a diverse range of both closed and open-source LLMs under different QA scenarios, including RAG with a single passage, and RAG with 2 contradictory passages.
arXiv Detail & Related papers (2024-06-19T20:13:42Z) - Auto-Arena: Automating LLM Evaluations with Agent Peer Battles and Committee Discussions [77.66677127535222]
Auto-Arena is an innovative framework that automates the entire evaluation process using LLM-powered agents.
In our experiments, Auto-Arena shows a 92.14% correlation with human preferences, surpassing all previous expert-annotated benchmarks.
arXiv Detail & Related papers (2024-05-30T17:19:19Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Sample-Efficient Human Evaluation of Large Language Models via Maximum Discrepancy Competition [46.949604465227054]
We propose a sample-efficient human evaluation method based on MAximum Discrepancy (MAD) competition.
MAD automatically selects a small set of informative and diverse instructions, each adapted to two LLMs.
The pairwise comparison results are then aggregated into a global ranking using the Elo rating system.
arXiv Detail & Related papers (2024-04-10T01:26:24Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.