Deriving Equivalent Symbol-Based Decision Models from Feedforward Neural Networks
- URL: http://arxiv.org/abs/2504.12446v2
- Date: Thu, 24 Apr 2025 21:25:42 GMT
- Title: Deriving Equivalent Symbol-Based Decision Models from Feedforward Neural Networks
- Authors: Sebastian Seidel, Uwe M. Borghoff,
- Abstract summary: Despite its rapid adoption, the opacity of AI systems poses significant challenges to trust and acceptance.<n>This work focuses on the derivation of symbolic models, such as decision trees, from feed-forward neural networks (FNNs)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) has emerged as a transformative force across industries, driven by advances in deep learning and natural language processing, and fueled by large-scale data and computing resources. Despite its rapid adoption, the opacity of AI systems poses significant challenges to trust and acceptance. This work explores the intersection of connectionist and symbolic approaches to artificial intelligence, focusing on the derivation of interpretable symbolic models, such as decision trees, from feedforward neural networks (FNNs). Decision trees provide a transparent framework for elucidating the operations of neural networks while preserving their functionality. The derivation is presented in a step-by-step approach and illustrated with several examples. A systematic methodology is proposed to bridge neural and symbolic paradigms by exploiting distributed representations in FNNs to identify symbolic components, including fillers, roles, and their interrelationships. The process traces neuron activation values and input configurations across network layers, mapping activations and their underlying inputs to decision tree edges. The resulting symbolic structures effectively capture FNN decision processes and enable scalability to deeper networks through iterative refinement of subpaths for each hidden layer. To validate the theoretical framework, a prototype was developed using Keras .h5-data and emulating TensorFlow within the Java JDK/JavaFX environment. This prototype demonstrates the feasibility of extracting symbolic representations from neural networks, enhancing trust in AI systems, and promoting accountability.
Related papers
- Switch-Based Multi-Part Neural Network [0.15749416770494706]
Decentralized and modular neural network framework designed to enhance the scalability, interpretability, and performance of AI systems.
At the heart of this framework is a dynamic switch mechanism that governs the selective activation and training of individual neurons.
arXiv Detail & Related papers (2025-04-25T10:39:42Z) - Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.<n>We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.<n>We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Neural network interpretability with layer-wise relevance propagation: novel techniques for neuron selection and visualization [0.49478969093606673]
We present a novel approach that improves the parsing of selected neurons during.<n>LRP backward propagation, using the Visual Geometry Group 16 (VGG16) architecture as a case study.<n>Our approach enhances interpretability and supports the development of more transparent artificial intelligence (AI) systems for computer vision applications.
arXiv Detail & Related papers (2024-12-07T15:49:14Z) - Identifying Sub-networks in Neural Networks via Functionally Similar Representations [41.028797971427124]
We take a step toward automating the understanding of the network by investigating the existence of distinct sub-networks.<n>Specifically, we explore a novel automated and task-agnostic approach based on the notion of functionally similar representations within neural networks.<n>We show the proposed approach offers meaningful insights into the behavior of neural networks with minimal human and computational cost.
arXiv Detail & Related papers (2024-10-21T20:19:00Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.<n>The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces [20.260546238369205]
We propose a framework that combines the pattern recognition abilities of neural networks with symbolic reasoning and background knowledge.
We take inspiration from the 'neural algorithmic reasoning' approach [DeepMind 2020] and use problem-specific background knowledge.
We test this on visual analogy problems in RAVENs Progressive Matrices, and achieve accuracy competitive with human performance.
arXiv Detail & Related papers (2022-09-19T04:03:20Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.