Neural network interpretability with layer-wise relevance propagation: novel techniques for neuron selection and visualization
- URL: http://arxiv.org/abs/2412.05686v1
- Date: Sat, 07 Dec 2024 15:49:14 GMT
- Title: Neural network interpretability with layer-wise relevance propagation: novel techniques for neuron selection and visualization
- Authors: Deepshikha Bhati, Fnu Neha, Md Amiruzzaman, Angela Guercio, Deepak Kumar Shukla, Ben Ward,
- Abstract summary: We present a novel approach that improves the parsing of selected neurons during.
LRP backward propagation, using the Visual Geometry Group 16 (VGG16) architecture as a case study.
Our approach enhances interpretability and supports the development of more transparent artificial intelligence (AI) systems for computer vision applications.
- Score: 0.49478969093606673
- License:
- Abstract: Interpreting complex neural networks is crucial for understanding their decision-making processes, particularly in applications where transparency and accountability are essential. This proposed method addresses this need by focusing on layer-wise Relevance Propagation (LRP), a technique used in explainable artificial intelligence (XAI) to attribute neural network outputs to input features through backpropagated relevance scores. Existing LRP methods often struggle with precision in evaluating individual neuron contributions. To overcome this limitation, we present a novel approach that improves the parsing of selected neurons during LRP backward propagation, using the Visual Geometry Group 16 (VGG16) architecture as a case study. Our method creates neural network graphs to highlight critical paths and visualizes these paths with heatmaps, optimizing neuron selection through accuracy metrics like Mean Squared Error (MSE) and Symmetric Mean Absolute Percentage Error (SMAPE). Additionally, we utilize a deconvolutional visualization technique to reconstruct feature maps, offering a comprehensive view of the network's inner workings. Extensive experiments demonstrate that our approach enhances interpretability and supports the development of more transparent artificial intelligence (AI) systems for computer vision applications. This advancement has the potential to improve the trustworthiness of AI models in real-world machine vision applications, thereby increasing their reliability and effectiveness.
Related papers
- Statistical tuning of artificial neural network [0.0]
This study introduces methods to enhance the understanding of neural networks, focusing specifically on models with a single hidden layer.
We propose statistical tests to assess the significance of input neurons and introduce algorithms for dimensionality reduction.
This research advances the field of Explainable Artificial Intelligence by presenting robust statistical frameworks for interpreting neural networks.
arXiv Detail & Related papers (2024-09-24T19:47:03Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Growing Deep Neural Network Considering with Similarity between Neurons [4.32776344138537]
We explore a novel approach of progressively increasing neuron numbers in compact models during training phases.
We propose a method that reduces feature extraction biases and neuronal redundancy by introducing constraints based on neuron similarity distributions.
Results on CIFAR-10 and CIFAR-100 datasets demonstrated accuracy improvement.
arXiv Detail & Related papers (2024-08-23T11:16:37Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
We introduce a sparse multitask learning framework for motor imagery (MI) and motor execution (ME) tasks.
Given a dual-task CNN model for MI-ME classification, we apply a saliency-based sparsification approach to prune superfluous connections.
Our results indicate that this tailored sparsity can mitigate the overfitting problem and improve the test performance with small amount of data.
arXiv Detail & Related papers (2023-12-10T09:06:16Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
We identify and characterize the emerging area of representation engineering (RepE)
RepE places population-level representations, rather than neurons or circuits, at the center of analysis.
We showcase how these methods can provide traction on a wide range of safety-relevant problems.
arXiv Detail & Related papers (2023-10-02T17:59:07Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
We propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples.
We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.
arXiv Detail & Related papers (2023-02-01T18:32:06Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Ensembling complex network 'perspectives' for mild cognitive impairment
detection with artificial neural networks [5.194561180498554]
We propose a novel method for mild cognitive impairment detection based on jointly exploiting the complex network and the neural network paradigm.
In particular, the method is based on ensembling different brain structural "perspectives" with artificial neural networks.
arXiv Detail & Related papers (2021-01-26T08:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.