You Don't Need All Attentions: Distributed Dynamic Fine-Tuning for Foundation Models
- URL: http://arxiv.org/abs/2504.12471v1
- Date: Wed, 16 Apr 2025 20:18:15 GMT
- Title: You Don't Need All Attentions: Distributed Dynamic Fine-Tuning for Foundation Models
- Authors: Shiwei Ding, Lan Zhang, Zhenlin Wang, Giuseppe Ateniese, Xiaoyong Yuan,
- Abstract summary: We introduce a novel Distributed Dynamic Fine-Tuning framework that orchestrates operations across attention modules.<n>D2FT significantly reduces the computational workload required for fine-tuning foundation models.<n>Results show that D2FT can be effectively extended to recent LoRA, a state-of-the-art parameter-efficient fine-tuning technique.
- Score: 13.234730313131054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning plays a crucial role in adapting models to downstream tasks with minimal training efforts. However, the rapidly increasing size of foundation models poses a daunting challenge for accommodating foundation model fine-tuning in most commercial devices, which often have limited memory bandwidth. Techniques like model sharding and tensor parallelism address this issue by distributing computation across multiple devices to meet memory requirements. Nevertheless, these methods do not fully leverage their foundation nature in facilitating the fine-tuning process, resulting in high computational costs and imbalanced workloads. We introduce a novel Distributed Dynamic Fine-Tuning (D2FT) framework that strategically orchestrates operations across attention modules based on our observation that not all attention modules are necessary for forward and backward propagation in fine-tuning foundation models. Through three innovative selection strategies, D2FT significantly reduces the computational workload required for fine-tuning foundation models. Furthermore, D2FT addresses workload imbalances in distributed computing environments by optimizing these selection strategies via multiple knapsack optimization. Our experimental results demonstrate that the proposed D2FT framework reduces the training computational costs by 40% and training communication costs by 50% with only 1% to 2% accuracy drops on the CIFAR-10, CIFAR-100, and Stanford Cars datasets. Moreover, the results show that D2FT can be effectively extended to recent LoRA, a state-of-the-art parameter-efficient fine-tuning technique. By reducing 40% computational cost or 50% communication cost, D2FT LoRA top-1 accuracy only drops 4% to 6% on Stanford Cars dataset.
Related papers
- Meta-Computing Enhanced Federated Learning in IIoT: Satisfaction-Aware Incentive Scheme via DRL-Based Stackelberg Game [50.6166553799783]
Efficient IIoT operations require a trade-off between model quality and training latency.
This paper designs a satisfaction function that accounts for data size, Age of Information (AoI), and training latency for meta-computing.
We employ a deep reinforcement learning approach to learn the Stackelberg equilibrium.
arXiv Detail & Related papers (2025-02-10T03:33:36Z) - Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
We propose Factorized Implicit Global Convolution (FIGConv), a novel architecture that efficiently solves CFD problems for very large 3D meshes.<n>FIGConv achieves quadratic complexity $O(N2)$, a significant improvement over existing 3D neural CFD models.<n>We validate our approach on the industry-standard Ahmed body dataset and the large-scale DrivAerNet dataset.
arXiv Detail & Related papers (2025-02-06T18:57:57Z) - Federated Learning with Workload Reduction through Partial Training of Client Models and Entropy-Based Data Selection [3.9981390090442694]
We propose FedFT-EDS, a novel approach that combines Fine-Tuning of partial client models with Entropy-based Data Selection to reduce training workloads on edge devices.<n>Our experiments show that FedFT-EDS uses only 50% user data while improving the global model performance compared to baseline methods, FedAvg and FedProx.<n>FedFT-EDS improves client learning efficiency by up to 3 times, using one third of training time on clients to achieve an equivalent performance to the baselines.
arXiv Detail & Related papers (2024-12-30T22:47:32Z) - GDeR: Safeguarding Efficiency, Balancing, and Robustness via Prototypical Graph Pruning [44.401418612374286]
We introduce a novel soft-pruning method, GDeR, designed to update the training during the process using trainable prototypes.
GDeR achieves or surpasses the performance of the full dataset with 30%50% fewer training samples.
It also outperforms state-of-the-art pruning methods in imbalanced training and noisy training scenarios.
arXiv Detail & Related papers (2024-10-17T16:56:01Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Reusing Pretrained Models by Multi-linear Operators for Efficient
Training [65.64075958382034]
Training large models from scratch usually costs a substantial amount of resources.
Recent studies such as bert2BERT and LiGO have reused small pretrained models to initialize a large model.
We propose a method that linearly correlates each weight of the target model to all the weights of the pretrained model.
arXiv Detail & Related papers (2023-10-16T06:16:47Z) - FTFT: Efficient and Robust Fine-Tuning by Transferring Training Dynamics [7.58472343957521]
We show that training dynamics are highly transferable across model sizes and pre-training methods.<n>We propose a novel fine-tuning approach: Fine-Tuning by transFerring Training dynamics (FTFT)
arXiv Detail & Related papers (2023-10-10T12:53:48Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning.
We propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios.
Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning.
arXiv Detail & Related papers (2023-08-12T10:33:57Z) - Distributed Pruning Towards Tiny Neural Networks in Federated Learning [12.63559789381064]
FedTiny is a distributed pruning framework for federated learning.
It generates specialized tiny models for memory- and computing-constrained devices.
It achieves an accuracy improvement of 2.61% while significantly reducing the computational cost by 95.91%.
arXiv Detail & Related papers (2022-12-05T01:58:45Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z) - ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training [65.68511423300812]
We propose ProgFed, a progressive training framework for efficient and effective federated learning.
ProgFed inherently reduces computation and two-way communication costs while maintaining the strong performance of the final models.
Our results show that ProgFed converges at the same rate as standard training on full models.
arXiv Detail & Related papers (2021-10-11T14:45:00Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.