Finding periodic orbits in projected quantum many-body dynamics
- URL: http://arxiv.org/abs/2504.12472v1
- Date: Wed, 16 Apr 2025 20:20:22 GMT
- Title: Finding periodic orbits in projected quantum many-body dynamics
- Authors: Elena Petrova, Marko Ljubotina, Gökhan Yalnız, Maksym Serbyn,
- Abstract summary: We develop an algorithm to systematically identify and characterize periodic orbits in TDVP dynamics.<n>We characterize the Kolmogorov-Arnold-Moser tori in the vicinity of stable periodic orbits and track the change of the periodic orbits as we modify the Hamiltonian parameters.<n>Our results demonstrate that periodic orbits provide valuable insights into the TDVP approximation of quantum many-body evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Describing general quantum many-body dynamics is a challenging task due to the exponential growth of the Hilbert space with system size. The time-dependent variational principle (TDVP) provides a powerful tool to tackle this task by projecting quantum evolution onto a classical dynamical system within a variational manifold. In classical systems, periodic orbits play a crucial role in understanding the structure of the phase space and the long-term behavior of the system. However, finding periodic orbits is generally difficult, and their existence and properties in generic TDVP dynamics over matrix product states have remained largely unexplored. In this work, we develop an algorithm to systematically identify and characterize periodic orbits in TDVP dynamics. Applying our method to the periodically kicked Ising model, we uncover both stable and unstable periodic orbits. We characterize the Kolmogorov-Arnold-Moser tori in the vicinity of stable periodic orbits and track the change of the periodic orbits as we modify the Hamiltonian parameters. We observe that periodic orbits exist at any value of the coupling constant between prethermal and fully thermalizing regimes, but their relevance to quantum dynamics and imprint on quantum eigenstates diminishes as the system leaves the prethermal regime. Our results demonstrate that periodic orbits provide valuable insights into the TDVP approximation of quantum many-body evolution and establish a closer connection between quantum and classical chaos.
Related papers
- Periodic classical trajectories and quantum scars in many-spin systems [0.0]
We numerically investigate the stability of exceptional periodic classical trajectories in chaotic many-body systems.
We explore a possible connection between these trajectories and exceptional nonthermal quantum eigenstates known as "quantum many-body scars"
Our investigation reveals the existence of quantum many-body scars for numerically accessible finite chains of spins 3/2 and higher.
arXiv Detail & Related papers (2024-08-30T21:08:22Z) - Space-time correlations in monitored kinetically constrained discrete-time quantum dynamics [0.0]
We show a kinetically constrained many-body quantum system that has a natural implementation on Rydberg quantum simulators.
Despite featuring an uncorrelated infinite-temperature average stationary state, the dynamics displays coexistence of fast and slow space-time regions.
Our work establishes the large deviation framework for discrete-time open quantum many-body systems as a means to characterize complex dynamics and collective phenomena in quantum processors and simulators.
arXiv Detail & Related papers (2024-08-19T10:24:07Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Metastable discrete time-crystal resonances in a dissipative central
spin system [0.0]
Generalizing the theory of metastability in open quantum systems, we develop an effective description for the evolution within a long-lived metastable subspace.
Our study links to timely questions concerning emergent collective behavior in the 'prethermal' stage of a dissipative quantum many-body evolution.
arXiv Detail & Related papers (2022-05-23T12:27:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Quantum scarring in a spin-boson system: fundamental families of
periodic orbits [0.0]
We study the effects of periodic orbits in the structure of the eigenstates in both regular and chaotic regimes.
We also introduce a measure to quantify how much scarred an eigenstate gets by each family of periodic orbits.
arXiv Detail & Related papers (2020-09-17T20:40:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Correspondence principle for many-body scars in ultracold Rydberg atoms [0.0]
Recently, interest in quantum scars has been revived in a many-body setting of Rydberg atom chains.
We show that quasimodes arise from a "requantisation" of previously established periodic orbits when quantum fluctuations are restored to all orders.
Our results shed light on the TDVP classical system simultaneously playing the role of both the mean-field approximation and the system's classical limit.
arXiv Detail & Related papers (2020-06-23T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.