Dynamics with autoregressive neural quantum states: application to
critical quench dynamics
- URL: http://arxiv.org/abs/2209.03241v2
- Date: Tue, 22 Aug 2023 14:54:54 GMT
- Title: Dynamics with autoregressive neural quantum states: application to
critical quench dynamics
- Authors: Kaelan Donatella, Zakari Denis, Alexandre Le Boit\'e, and Cristiano
Ciuti
- Abstract summary: We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite very promising results, capturing the dynamics of complex quantum
systems with neural-network ans\"atze has been plagued by several problems, one
of which being stochastic noise that makes the dynamics unstable and highly
dependent on some regularization hyperparameters. We present an alternative
general scheme that enables one to capture long-time dynamics of quantum
systems in a stable fashion, provided the neural-network ansatz is normalized,
which can be ensured by the autoregressive property of the chosen ansatz. We
then apply the scheme to time-dependent quench dynamics by investigating the
Kibble-Zurek mechanism in the two-dimensional quantum Ising model. We find an
excellent agreement with exact dynamics for small systems and are able to
recover scaling laws in agreement with other variational methods.
Related papers
- A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics [0.0]
We show that a deep artificial neural network can predict the long-time population dynamics of a quantum system coupled to a dissipative environment.
Our model is more accurate than classical forecasting models, such as recurrent neural networks.
arXiv Detail & Related papers (2024-09-17T16:17:52Z) - Artificial-intelligence-based surrogate solution of dissipative quantum
dynamics: physics-informed reconstruction of the universal propagator [0.0]
We introduce an artificial-intelligence-based surrogate model that solves dissipative quantum dynamics.
Our quantum neural propagator avoids time-consuming iterations and provides a universal super-operator.
arXiv Detail & Related papers (2024-02-05T07:52:04Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Simulability transitions in continuous-time dynamics of local open
quantum systems [0.913755431537592]
We prove that a time classical algorithm can be used to sample from the state of the spins when the rate of noise is higher than a threshold determined by the strength of the local interactions.
We show that for several noise channels, the problem of weakly simulating the output state of both purely Hamiltonian and purely dissipative dynamics is expected to be hard in the low-noise regime.
arXiv Detail & Related papers (2021-10-20T16:06:42Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Unpredictability and entanglement in open quantum systems [0.0]
We show that unpredictability and quantum entanglement can coexist even in the long time limit.
We show that the required many-body interactions for the cellular automaton embedding can be efficiently realized within a variational quantum simulator platform.
arXiv Detail & Related papers (2021-06-14T18:00:12Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.