論文の概要: Heuristic Recognition and Rapid Response to Unfamiliar Events Outside of Agent Design Scope
- arxiv url: http://arxiv.org/abs/2504.12497v1
- Date: Wed, 16 Apr 2025 21:26:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:37:10.177289
- Title: Heuristic Recognition and Rapid Response to Unfamiliar Events Outside of Agent Design Scope
- Title(参考訳): エージェントデザインスコープ外の未知事象に対するヒューリスティック認識と迅速応答
- Authors: Robert E. Wray, Steven J. Jones, John E. Laird,
- Abstract要約: オープンな世界のエージェントは、経験や既存のモデル、ポリシー以外の、馴染みのない状況やイベントに直面します。
本稿では,ドメイン一般メタ知識(人間の認知にインスパイアされた評価の形で)とメタレゾニングを組み合わせた新しいアプローチを提案する。
未知の状況に対して高速で適応的な応答を提供する可能性があり、オープンワールドのジェネラルエージェントに必要なパフォーマンス特性を十分に満たすことができる。
- 参考スコア(独自算出の注目度): 3.3181276611945254
- License:
- Abstract: Regardless of past learning, an agent in an open world will face unfamiliar situations and events outside of prior experience, existing models, or policies. Further, the agent will sometimes lack relevant knowledge and/or sufficient time to assess the situation, generate and evaluate options, and pursue a robustly considered course of action. How can an agent respond reasonably to situations that are outside of its original design scope? How can it recognize such situations sufficiently quickly and reliably to determine reasonable, adaptive courses of action? We identify key characteristics needed for solutions, evaluate the state-of-the-art by these requirements, and outline a proposed, novel approach that combines domain-general meta-knowledge (in the form of appraisals inspired by human cognition) and metareasoning. It has the potential to provide fast, adaptive responses to unfamiliar situations, more fully meeting the performance characteristics required for open-world, general agents.
- Abstract(参考訳): 過去の学習にかかわらず、オープンワールドのエージェントは、以前の経験、既存のモデル、あるいはポリシー以外の、馴染みのない状況や出来事に直面します。
さらに、エージェントは、状況を評価し、選択肢を生成し、評価し、しっかりと検討された行動経路を追求するのに十分な、関連する知識や/または十分な時間を欠くことがある。
エージェントは、元の設計範囲外にある状況に対して、合理的に応答できるだろうか?
合理的かつ適応的な行動コースを決定するために、そのような状況を十分に迅速かつ確実に認識するにはどうすればいいのか?
我々は,これらの要件によって解決に必要な重要な特徴を特定し,その評価を行い,ドメイン一般メタ知識(人間の認知にインスパイアされた評価の形で)とメタ推論を組み合わせた,新しいアプローチを概説する。
未知の状況に対して高速で適応的な応答を提供する可能性があり、オープンワールドのジェネラルエージェントに必要なパフォーマンス特性を十分に満たすことができる。
関連論文リスト
- HawkBench: Investigating Resilience of RAG Methods on Stratified Information-Seeking Tasks [50.871243190126826]
HawkBenchは、RAGのパフォーマンスを厳格に評価するために設計された、人間ラベル付きマルチドメインベンチマークである。
情報探索行動に基づくタスクの階層化により、HawkBenchはRAGシステムが多様なユーザニーズにどのように適応するかを体系的に評価する。
論文 参考訳(メタデータ) (2025-02-19T06:33:39Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - LLMs as Function Approximators: Terminology, Taxonomy, and Questions for Evaluation [18.2932386988379]
本稿では,これらのモデルモデルにおける明瞭さの喪失が,「人工的な一般知性」などのメタファーにつながることを論じる。
この提案は、自然言語仕様に基づいて専門関数を近似する能力において、それらの一般化と潜在的な価値を見出すことである。
論文 参考訳(メタデータ) (2024-07-18T17:49:56Z) - Dynamics Generalisation in Reinforcement Learning via Adaptive
Context-Aware Policies [13.410372954752496]
一般化を改善するために,行動学習に文脈をどのように組み込むべきかについて検討する。
ニューラルネットワークアーキテクチャであるDecision Adapterを導入し、アダプタモジュールの重みを生成し、コンテキスト情報に基づいてエージェントの動作を条件付ける。
決定適応器は以前に提案したアーキテクチャの有用な一般化であり、より優れた一般化性能をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2023-10-25T14:50:05Z) - Eliciting Risk Aversion with Inverse Reinforcement Learning via
Interactive Questioning [0.0]
本稿では,対話型質問を用いたエージェントのリスク回避のための新しいフレームワークを提案する。
エージェントのリスク回避は、質問の数が無限大になる傾向があり、質問がランダムに設計されるため、特定できることを示す。
我々のフレームワークはロボアドバイスに重要な応用があり、エージェントのリスク嗜好を特定するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2023-08-16T15:17:57Z) - Measuring Re-identification Risk [72.6715574626418]
コンパクトなユーザ表現における再識別リスクを測定するための新しい理論的枠組みを提案する。
我々のフレームワークは、攻撃者がその表現からユーザのアイデンティティを取得できる確率を正式に制限します。
当社のフレームワークが、関心に基づく広告のためのChromeのトピックAPIのような、重要な現実世界のアプリケーションをモデル化するのに十分な一般性を示している。
論文 参考訳(メタデータ) (2023-04-12T16:27:36Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Generalizing Decision Making for Automated Driving with an Invariant
Environment Representation using Deep Reinforcement Learning [55.41644538483948]
現在のアプローチは、トレーニングデータを超えてよく一般化されないか、または可変数のトラフィック参加者を考慮することができない。
本研究では,エゴ車の観点から不変環境表現を提案する。
この抽象化により,エージェントが未確認シナリオに対してうまく一般化できることが示される。
論文 参考訳(メタデータ) (2021-02-12T20:37:29Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
本研究では,時間論理仕様を満たすための学習課題を,未知の環境下でエージェントのグループで検討する。
我々は、時間論理仕様のための最初のマルチエージェント強化学習手法を開発した。
主アルゴリズムの正確性と収束性を保証する。
論文 参考訳(メタデータ) (2021-02-01T01:13:03Z) - Probing Emergent Semantics in Predictive Agents via Question Answering [29.123837711842995]
近年の研究では、予測モデリングがエージェントに周囲の知識を豊富に与え、複雑な環境での行動能力を向上させる方法が示されている。
本稿では,そのようなエージェントがモデルを開発する表現をデコードし,理解するための一般的なパラダイムとして,質問応答を提案する。
質問応答デコーダからエージェントへの勾配をバックプロパゲートすることなく、それらの内部状態表現を合成的(英語)質問で探索する。
論文 参考訳(メタデータ) (2020-06-01T15:27:36Z) - What's a Good Prediction? Challenges in evaluating an agent's knowledge [0.9281671380673306]
一般知識の精度と有用性の矛盾を示す。
本稿では,オンライン連続学習環境において連続的に発生する代替評価手法を提案する。
本稿では,その利用による予測評価について初めて考察する。
論文 参考訳(メタデータ) (2020-01-23T21:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。