論文の概要: MOM: Memory-Efficient Offloaded Mini-Sequence Inference for Long Context Language Models
- arxiv url: http://arxiv.org/abs/2504.12526v1
- Date: Wed, 16 Apr 2025 23:15:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:39:32.061557
- Title: MOM: Memory-Efficient Offloaded Mini-Sequence Inference for Long Context Language Models
- Title(参考訳): MOM:長期文脈言語モデルのためのメモリ効率の良いオフロード最小シーケンス推論
- Authors: Junyang Zhang, Tianyi Zhu, Cheng Luo, Anima Anandkumar,
- Abstract要約: メモリ効率の良いオフロードミニシーケンス推論(MOM)を提案する。
MOMは重要なレイヤを小さな“ミニシーケンス”に分割し、KVキャッシュのオフロードとシームレスに統合する。
Meta-Llama-3.2-8Bでは、単一のA100 80GB GPU上での最大コンテキスト長を155kから455kに拡張する。
- 参考スコア(独自算出の注目度): 72.61076288351201
- License:
- Abstract: Long-context language models exhibit impressive performance but remain challenging to deploy due to high GPU memory demands during inference. We propose Memory-efficient Offloaded Mini-sequence Inference (MOM), a method that partitions critical layers into smaller "mini-sequences" and integrates seamlessly with KV cache offloading. Experiments on various Llama, Qwen, and Mistral models demonstrate that MOM reduces peak memory usage by over 50\% on average. On Meta-Llama-3.2-8B, MOM extends the maximum context length from 155k to 455k tokens on a single A100 80GB GPU, while keeping outputs identical and not compromising accuracy. MOM also maintains highly competitive throughput due to minimal computational overhead and efficient last-layer processing. Compared to traditional chunked prefill methods, MOM achieves a 35\% greater context length extension. More importantly, our method drastically reduces prefill memory consumption, eliminating it as the longstanding dominant memory bottleneck during inference. This breakthrough fundamentally changes research priorities, redirecting future efforts from prefill-stage optimizations to improving decode-stage residual KV cache efficiency.
- Abstract(参考訳): 長いコンテキスト言語モデルは優れたパフォーマンスを示すが、推論時に高いGPUメモリ要求のためにデプロイすることは困難である。
我々は,重要なレイヤを小さな"ミニシーケンス"に分割し,KVキャッシュのオフロードとシームレスに統合する手法であるメモリ効率の低下最小シーケンス推論(MOM)を提案する。
様々なLlama、Qwen、Mistralモデルの実験により、MOMはピークメモリ使用量を平均50%以上削減することを示した。
Meta-Llama-3.2-8Bでは、MOMは最大コンテキスト長をA100 80GBのGPU上で155kから455kまで拡張し、出力は同一であり、精度は向上しない。
MOMはまた、計算オーバーヘッドの最小化と効率的な最終層処理のために、高い競争力を維持する。
従来のチャンクプリフィル法と比較して、MOM はコンテキスト長を 35 % 拡張する。
さらに重要なことは,提案手法がプリフィルメモリの消費を劇的に減らし,推論において長期にわたって支配的であったメモリボトルネックを解消することである。
このブレークスルーは研究の優先順位を根本的に変え、プリフィルステージの最適化からデコードステージの残留KVキャッシュ効率の改善へと、今後の取り組みを振り返る。
関連論文リスト
- MoM: Linear Sequence Modeling with Mixture-of-Memories [9.665802842933209]
我々はMixture-of-Memories (MoM)と呼ばれる新しいアーキテクチャを導入する。
MoMは複数の独立したメモリ状態を利用し、ルータネットワークは入力トークンを特定のメモリ状態に誘導する。
MoMは、既存の線形シーケンスモデリング技術を超え、リコール集約タスクにおいて非常によく機能する。
論文 参考訳(メタデータ) (2025-02-19T12:53:55Z) - InfiniteHiP: Extending Language Model Context Up to 3 Million Tokens on a Single GPU [48.105361428245736]
大規模言語モデル(LLM)の推論フレームワークであるInfiniteHiPを紹介する。
モジュール型階層型トークンプルーニングアルゴリズムにより,無関係なコンテキストトークンを動的に除去する。
我々のフレームワークは、追加のトレーニングを必要とせず、100万のトークンコンテキストに対して18.95倍のアテンションデコーディングを実現する。
論文 参考訳(メタデータ) (2025-02-13T02:52:01Z) - CompAct: Compressed Activations for Memory-Efficient LLM Training [7.837209773889032]
CompActはGPU上でのピークメモリ利用を事前トレーニングで25~30%削減し、LLMの微調整で50%削減する技術である。
低ランクで圧縮されたアクティベーションを後方パスに格納することで、必要なメモリを大幅に削減する。
CompActの貯蓄は、より大きなモデルに対してさらに高いスケールを期待しています。
論文 参考訳(メタデータ) (2024-10-20T10:24:38Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
論文 参考訳(メタデータ) (2024-07-22T14:37:58Z) - MEMO: Fine-grained Tensor Management For Ultra-long Context LLM Training [24.066283519769968]
大規模言語モデル(LLM)は、よりクリエイティブなアプリケーションを促進するために、拡張コンテキスト長を使用して訓練されている。
本稿では,メモリ管理を微粒化するための新しいフレームワークであるMEMOを提案する。
MeMOはMegatron-LMやDeepSpeedと比べて平均1.97倍と1.80倍のMFUを達成している。
論文 参考訳(メタデータ) (2024-07-16T18:59:49Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。