論文の概要: Parsimonious Dataset Construction for Laparoscopic Cholecystectomy Structure Segmentation
- arxiv url: http://arxiv.org/abs/2504.12573v1
- Date: Thu, 17 Apr 2025 01:40:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:19.079001
- Title: Parsimonious Dataset Construction for Laparoscopic Cholecystectomy Structure Segmentation
- Title(参考訳): 腹腔鏡下胆嚢摘出術構造分割術における同時的データセット構築
- Authors: Yuning Zhou, Henry Badgery, Matthew Read, James Bailey, Catherine Davey,
- Abstract要約: セグメンテーションのための高品質で安価な腹腔鏡下胆嚢摘出データセットを構築した。
アクティブな学習により、データセット構築ワークフローを含むディープニューラルネットワーク(DNN)学習パイプラインが可能になる。
- 参考スコア(独自算出の注目度): 8.223940676615857
- License:
- Abstract: Labeling has always been expensive in the medical context, which has hindered related deep learning application. Our work introduces active learning in surgical video frame selection to construct a high-quality, affordable Laparoscopic Cholecystectomy dataset for semantic segmentation. Active learning allows the Deep Neural Networks (DNNs) learning pipeline to include the dataset construction workflow, which means DNNs trained by existing dataset will identify the most informative data from the newly collected data. At the same time, DNNs' performance and generalization ability improve over time when the newly selected and annotated data are included in the training data. We assessed different data informativeness measurements and found the deep features distances select the most informative data in this task. Our experiments show that with half of the data selected by active learning, the DNNs achieve almost the same performance with 0.4349 mean Intersection over Union (mIoU) compared to the same DNNs trained on the full dataset (0.4374 mIoU) on the critical anatomies and surgical instruments.
- Abstract(参考訳): ラベル付けは常に医学的文脈において高価であり、関連するディープラーニングアプリケーションを妨げる。
本研究は, 手術用ビデオフレーム選択における能動的学習を導入し, セマンティックセグメンテーションのための高品質で手頃な腹腔鏡下胆嚢摘出データセットを構築した。
アクティブな学習により、データセット構築ワークフローを含むディープニューラルネットワーク(DNN)学習パイプラインが可能になる。
同時に、新たに選択された注釈付きデータがトレーニングデータに含まれると、DNNのパフォーマンスと一般化能力は時間とともに向上する。
異なるデータ情報度の測定を行い, 深部特徴距離が, この課題における最も情報性の高いデータを選択することを発見した。
実験の結果, アクティブラーニングによって選択されたデータの半分では, 臨界解剖学および手術器具の完全なデータセット (0.4374 mIoU) で訓練されたDNNと比較すると, 0.4349 平均接点 (mIoU) とほぼ同等の性能を示した。
関連論文リスト
- An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data [35.943089444017666]
本稿では,長期臨床経過データに適した比較事前学習法を提案する。
本モデルでは, 臨床医が患者の症状についてより深い知見を得られるように, 欠損測定をインプットする能力を示す。
論文 参考訳(メタデータ) (2024-10-11T19:05:25Z) - A novel open-source ultrasound dataset with deep learning benchmarks for
spinal cord injury localization and anatomical segmentation [1.02101998415327]
ブタ脊髄の矢状切片からなる10,223モード(Bモード)画像の超音波データセットを提案する。
損傷部位をローカライズするために,いくつかの最先端オブジェクト検出アルゴリズムの性能指標をベンチマークした。
ヒトの超音波脊髄画像におけるセグメンテーションモデルのゼロショット一般化能力を評価する。
論文 参考訳(メタデータ) (2024-09-24T20:22:59Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - The impact of training dataset size and ensemble inference strategies on
head and neck auto-segmentation [0.0]
コンボリューショナルニューラルネットワーク(CNN)は、放射線治療において臓器とリスクのセグメンテーションを自動化するためにますます使われている。
頭部・頸部自動分離モデルの正確かつ堅牢な訓練に要するデータ量について検討した。
確立された3D CNNは、スクラッチから異なるサイズのデータセット(25-1000スキャン)を用いて訓練され、脳幹、耳下腺、脊髄をCTで分割した。
これらのモデルの性能向上のために,複数のアンサンブル手法を評価した。
論文 参考訳(メタデータ) (2023-03-30T12:14:07Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - Neural Network Training with Highly Incomplete Datasets [1.5658704610960568]
GapNetは、高度に不完全なデータセットを使用することができる、別のディープラーニングトレーニングアプローチである。
以上の結果から,GapNetはアルツハイマー病の病態とコビッド19による入院リスクのある患者の同定を改善することが示唆された。
論文 参考訳(メタデータ) (2021-07-01T13:21:45Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Diminishing Uncertainty within the Training Pool: Active Learning for
Medical Image Segmentation [6.3858225352615285]
医用画像データセットのセグメンテーション作業におけるアクティブラーニングについて検討する。
トレーニングデータセットをバイアスする不確実データの頻度の増大、入力画像間の相互情報を正規化として利用すること、およびスタイン変動勾配降下(SVGD)のためのダイスログの類似性(Dice log-likelihood)の適応という3つの新しいアクティブ学習戦略を提案する。
その結果、データセット毎に利用可能なデータの22.69 %と48.85 %をそれぞれ使用しながら、完全な精度を達成することで、データ削減の観点での改善が示された。
論文 参考訳(メタデータ) (2021-01-07T01:55:48Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - LRTD: Long-Range Temporal Dependency based Active Learning for Surgical
Workflow Recognition [67.86810761677403]
本稿では,費用対効果の高い手術ビデオ解析のための新しい能動的学習法を提案する。
具体的には,非局所的再帰的畳み込みネットワーク (NL-RCNet) を提案する。
手術ワークフロー認識タスクを実行することで,大規模な手術ビデオデータセット(Cholec80)に対するアプローチを検証する。
論文 参考訳(メタデータ) (2020-04-21T09:21:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。