Physics Informed Constrained Learning of Dynamics from Static Data
- URL: http://arxiv.org/abs/2504.12675v2
- Date: Tue, 22 Apr 2025 05:57:01 GMT
- Title: Physics Informed Constrained Learning of Dynamics from Static Data
- Authors: Pengtao Dang, Tingbo Guo, Melissa Fishel, Guang Lin, Wenzhuo Wu, Sha Cao, Chi Zhang,
- Abstract summary: A physics-informed neural network (PINN) models the dynamics of a system by integrating the governing physical laws into the architecture of a neural network.<n>Existing PINN frameworks rely on fully observed time-course data, the acquisition of which could be prohibitive for many systems.<n>In this study, we developed a new PINN learning paradigm, namely Constrained Learning, that enables the approximation of first-order derivatives or motions using non-time course or partially observed data.
- Score: 8.346864633675414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A physics-informed neural network (PINN) models the dynamics of a system by integrating the governing physical laws into the architecture of a neural network. By enforcing physical laws as constraints, PINN overcomes challenges with data scarsity and potentially high dimensionality. Existing PINN frameworks rely on fully observed time-course data, the acquisition of which could be prohibitive for many systems. In this study, we developed a new PINN learning paradigm, namely Constrained Learning, that enables the approximation of first-order derivatives or motions using non-time course or partially observed data. Computational principles and a general mathematical formulation of Constrained Learning were developed. We further introduced MPOCtrL (Message Passing Optimization-based Constrained Learning) an optimization approach tailored for the Constrained Learning framework that strives to balance the fitting of physical models and observed data. Its code is available at github link: https://github.com/ptdang1001/MPOCtrL Experiments on synthetic and real-world data demonstrated that MPOCtrL can effectively detect the nonlinear dependency between observed data and the underlying physical properties of the system. In particular, on the task of metabolic flux analysis, MPOCtrL outperforms all existing data-driven flux estimators.
Related papers
- Evolutionary Optimization of Physics-Informed Neural Networks: Survey and Prospects [23.92936460045325]
Physics-informed neural networks (PINNs) are infused with mathematically expressible laws of nature into their training loss function.
PINNs provide advantages over purely data-driven models in limited-data regimes.
This review examines PINNs for the first time in terms of model optimization and generalization.
arXiv Detail & Related papers (2025-01-11T15:45:11Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.<n>The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.<n>Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Peridynamic Neural Operators: A Data-Driven Nonlocal Constitutive Model
for Complex Material Responses [12.454290779121383]
We introduce a novel integral neural operator architecture called the Peridynamic Neural Operator (PNO) that learns a nonlocal law from data.
This neural operator provides a forward model in the form of state-based peridynamics, with objectivity and momentum balance laws automatically guaranteed.
We show that, owing to its ability to capture complex responses, our learned neural operator achieves improved accuracy and efficiency compared to baseline models.
arXiv Detail & Related papers (2024-01-11T17:37:20Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
One of the major challenges is to infer the underlying causes, which generate the perceived data stream.
Success of machine learning based predictive models requires massive annotated data for model training.
Our experiments on both synthetic and real-world datasets exhibit that the proposed ST-PCNN with active learning converges to optimal accuracy with substantially fewer instances.
arXiv Detail & Related papers (2021-08-11T18:05:55Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Tensor network approaches for learning non-linear dynamical laws [0.0]
We show that various physical constraints can be captured via tensor network based parameterizations for the governing equation.
We provide a physics-informed approach to recovering structured dynamical laws from data, which adaptively balances the need for expressivity and scalability.
arXiv Detail & Related papers (2020-02-27T19:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.