論文の概要: Quantum circuit synthesis with qudit phase gadget method
- arxiv url: http://arxiv.org/abs/2504.12710v1
- Date: Thu, 17 Apr 2025 07:26:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:33.462404
- Title: Quantum circuit synthesis with qudit phase gadget method
- Title(参考訳): qudit位相ガジェット法による量子回路合成
- Authors: Shuai Yang, Lihao Xu, Guojing Tian, Xiaoming Sun,
- Abstract要約: 対角ユニタリ行列を合成するための新しいQudit位相ガジェット法を提案する。
この方法は、ノイズ中間スケール量子(NISQ)とフォールトトレラントの時代に適している。
10量子対角ユニタリの場合、このアルゴリズムは回路深さをおよそ100000から500に減らし、300個のアシラリーキュートリットを持つ。
- 参考スコア(独自算出の注目度): 12.51731919903278
- License:
- Abstract: Current quantum devices have unutilized high-level quantum resources. More and more attention has been paid to the qudit quantum systems with larger than two dimensions to maximize the potential computing power of quantum computation. Then, a natural problem arises: How do we implement quantum algorithms on qudit quantum systems? In this work, we propose a novel qudit phase gadget method for synthesizing the qudit diagonal unitary matrices. This method is suitable for the Noisy Intermediate-Scale Quantum (NISQ) and fault-tolerant eras due to its versatility in different connectivity architectures and the optimality of its resource consumption. The method can work on any connectivity architecture with asymptotic optimal circuit depth and size. For a 10-qutrit diagonal unitary, our algorithm reduces the circuit depth form about 100000 to 500 with 300 ancillary qutrits. Further, this method can be promoted to different quantum circuit synthesis problems, such as quantum state preparation problems, general unitary synthesis problems, etc.
- Abstract(参考訳): 現在の量子デバイスは、未使用の高レベルの量子資源を持っている。
量子計算の潜在的な計算能力を最大化するために、2次元以上のクディット量子系により多くの注意が払われている。
Qudit量子システム上で量子アルゴリズムをどのように実装すればよいのか?
そこで本研究では,Qudit対角ユニタリ行列を合成するための新しいQudit位相ガジェット手法を提案する。
この方法は、異なる接続アーキテクチャの汎用性とリソース消費の最適性から、ノイズの中間量子(NISQ)と耐故障性に適している。
この手法は、漸近的な最適回路深さとサイズを持つ接続アーキテクチャでも動作する。
10量子対角ユニタリの場合、このアルゴリズムは回路深さをおよそ100000から500に減らし、300個のアシラリーキュートリットを持つ。
さらに、この方法は、量子状態生成問題、一般ユニタリ合成問題など、異なる量子回路合成問題に昇格することができる。
関連論文リスト
- Entropy-driven entanglement forging [0.0]
本研究では、エントロピー駆動型エンタングルメント鍛造法を用いて、ノイズの多い中間スケール量子デバイスの限界に量子シミュレーションを適応させる方法について述べる。
提案手法は, エントロピー駆動型エンタングルメント鍛造法を用いて, ノイズの多い中間規模量子デバイスの限界に量子シミュレーションを適応させることが可能である。
論文 参考訳(メタデータ) (2024-09-06T16:54:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Enhancing variational quantum state diagonalization using reinforcement
learning techniques [1.583327010995414]
我々は、量子状態対角化タスクに必要な非常に浅い量子回路を設計する問題に取り組む。
我々は、RL状態に対する新しい符号化法、高密度報酬関数、およびそれを実現するために$epsilon$-greedyポリシーを使用する。
強化学習法により提案される回路は, 標準変分量子状態対角化アルゴリズムよりも浅いことを示す。
論文 参考訳(メタデータ) (2023-06-19T17:59:04Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
マルチレベル量子システム(キューディット)を用いた量子アルゴリズムの効率的な実装手法を提案する。
提案手法は,Quditベースのプロセッサのパラメータに依存する標準量子ビット方式の回路のトランスパイレーションを用いる。
特定の普遍集合から取られた単一量子ゲートと2量子ゲートの列に量子回路を変換する明示的なスキームを提供する。
論文 参考訳(メタデータ) (2021-11-08T11:09:37Z) - Configurable sublinear circuits for quantum state preparation [1.9279780052245203]
量子回路で$O(sqrtN)$の幅と深さと絡み合った情報をアシラリー量子ビットで符号化する構成を示す。
5つの量子コンピュータ上で原理実証を行い、その結果を比較した。
論文 参考訳(メタデータ) (2021-08-23T13:52:43Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Numerical hardware-efficient variational quantum simulation of a soliton
solution [0.0]
ハードウェア効率の変動固有解器に特に注意を払う量子アルゴリズムの能力について論じる。
磁気相互作用間の微妙な相互作用は、磁気秩序の均一性を破壊するキラル状態の安定化を可能にする。
均一な磁気構造を正確に再現できる一方で、ハードウェア効率の良いアンサッツは、非コリニア磁気構造に詳細な記述を提供することが困難である。
論文 参考訳(メタデータ) (2021-05-13T11:58:18Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
我々は、量子幾何学的制御問題に対するディープラーニングの適用をレビューし、拡張する。
量子回路合成問題における時間-最適制御の強化について述べる。
我々の研究結果は、時間-最適制御問題に対する機械学習と幾何学的手法を組み合わせた量子制御と量子情報理論の研究者にとって興味深いものである。
論文 参考訳(メタデータ) (2020-06-19T19:12:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。