Hierarchical Vector Quantized Graph Autoencoder with Annealing-Based Code Selection
- URL: http://arxiv.org/abs/2504.12715v1
- Date: Thu, 17 Apr 2025 07:43:52 GMT
- Title: Hierarchical Vector Quantized Graph Autoencoder with Annealing-Based Code Selection
- Authors: Long Zeng, Jianxiang Yu, Jiapeng Zhu, Qingsong Zhong, Xiang Li,
- Abstract summary: The Vector Quantized Variational Autoencoder (VQ-VAE) is a powerful autoencoder extensively used in fields such as computer vision.<n>In this paper, we provide an empirical analysis of vector quantization in the context of graph autoencoders.<n>We identify two key challenges associated with vector quantization when applying in graph data: codebook underutilization and codebook space sparsity.
- Score: 13.731120424653705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph self-supervised learning has gained significant attention recently. However, many existing approaches heavily depend on perturbations, and inappropriate perturbations may corrupt the graph's inherent information. The Vector Quantized Variational Autoencoder (VQ-VAE) is a powerful autoencoder extensively used in fields such as computer vision; however, its application to graph data remains underexplored. In this paper, we provide an empirical analysis of vector quantization in the context of graph autoencoders, demonstrating its significant enhancement of the model's capacity to capture graph topology. Furthermore, we identify two key challenges associated with vector quantization when applying in graph data: codebook underutilization and codebook space sparsity. For the first challenge, we propose an annealing-based encoding strategy that promotes broad code utilization in the early stages of training, gradually shifting focus toward the most effective codes as training progresses. For the second challenge, we introduce a hierarchical two-layer codebook that captures relationships between embeddings through clustering. The second layer codebook links similar codes, encouraging the model to learn closer embeddings for nodes with similar features and structural topology in the graph. Our proposed model outperforms 16 representative baseline methods in self-supervised link prediction and node classification tasks across multiple datasets.
Related papers
- Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning [47.74244053386216]
Graph condensation is a promising solution to synthesize a compact, substitute graph of the large-scale original graph.
We introduce Contrastive Graph Condensation (CTGC), which adopts a self-supervised surrogate task to extract critical, causal information from the original graph.
CTGC excels in handling various downstream tasks with a limited number of labels, consistently outperforming state-of-the-art GC methods.
arXiv Detail & Related papers (2024-11-26T03:01:22Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
Graph Transformers, which incorporate self-attention and positional encoding, have emerged as a powerful architecture for various graph learning tasks.
This paper introduces first theoretical investigation of a shallow Graph Transformer for semi-supervised classification.
arXiv Detail & Related papers (2024-06-04T05:30:16Z) - Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification [10.497590357666114]
We propose the Self-Label Augmented VGAE model for inductive graph representation learning.
To leverage the label information for training, our model takes node labels as one-hot encoded inputs and then performs label reconstruction in model training.
Our proposed model archives promise results on node classification with particular superiority under semi-supervised learning settings.
arXiv Detail & Related papers (2024-03-26T08:59:37Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Discrete Graph Auto-Encoder [52.50288418639075]
We introduce a new framework named Discrete Graph Auto-Encoder (DGAE)
We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations.
In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model.
arXiv Detail & Related papers (2023-06-13T12:40:39Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Graph-Collaborated Auto-Encoder Hashing for Multi-view Binary Clustering [11.082316688429641]
We propose a hashing algorithm based on auto-encoders for multi-view binary clustering.
Specifically, we propose a multi-view affinity graphs learning model with low-rank constraint, which can mine the underlying geometric information from multi-view data.
We also design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively.
arXiv Detail & Related papers (2023-01-06T12:43:13Z) - Hub-aware Random Walk Graph Embedding Methods for Classification [44.99833362998488]
We propose two novel graph embedding algorithms based on random walks that are specifically designed for the node classification problem.
The proposed methods are experimentally evaluated by analyzing the classification performance of three classification algorithms trained on embeddings of real-world networks.
arXiv Detail & Related papers (2022-09-15T20:41:18Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked graph autoencoder (MGAE) framework to perform effective learning on graph structure data.
Taking insights from self-supervised learning, we randomly mask a large proportion of edges and try to reconstruct these missing edges during training.
arXiv Detail & Related papers (2022-01-07T16:48:07Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - AEGCN: An Autoencoder-Constrained Graph Convolutional Network [5.023274927781062]
We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network.
The core of this model is a convolutional network operating directly on graphs, whose hidden layers are constrained by an autoencoder.
We show that adding autoencoder constraints significantly improves the performance of graph convolutional networks.
arXiv Detail & Related papers (2020-07-03T16:42:55Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.