論文の概要: Adversary-Augmented Simulation for Fairness Evaluation and Defense in Hyperledger Fabric
- arxiv url: http://arxiv.org/abs/2504.12733v1
- Date: Thu, 17 Apr 2025 08:17:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:34:56.258987
- Title: Adversary-Augmented Simulation for Fairness Evaluation and Defense in Hyperledger Fabric
- Title(参考訳): Hyperledgerファブリックの公正性評価と防御のためのAdversary-Augmented Simulation
- Authors: Erwan Mahe, Rouwaida Abdallah, Pierre-Yves Piriou, Sara Tucci-Piergiovanni,
- Abstract要約: 本稿では,複数のプロトコルからなる分散システムに対する攻撃の分析に適した,逆モデルとシミュレーションフレームワークを提案する。
本モデルでは,対象プロトコルの仮定に基づいて,対戦行動の分類と制約を行う。
このフレームワークを適用して、Hyperledger Fabric(HF)ブロックチェーンネットワークの公平性特性を分析する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents an adversary model and a simulation framework specifically tailored for analyzing attacks on distributed systems composed of multiple distributed protocols, with a focus on assessing the security of blockchain networks. Our model classifies and constrains adversarial actions based on the assumptions of the target protocols, defined by failure models, communication models, and the fault tolerance thresholds of Byzantine Fault Tolerant (BFT) protocols. The goal is to study not only the intended effects of adversarial strategies but also their unintended side effects on critical system properties. We apply this framework to analyze fairness properties in a Hyperledger Fabric (HF) blockchain network. Our focus is on novel fairness attacks that involve coordinated adversarial actions across various HF services. Simulations show that even a constrained adversary can violate fairness with respect to specific clients (client fairness) and impact related guarantees (order fairness), which relate the reception order of transactions to their final order in the blockchain. This paper significantly extends our previous work by introducing and evaluating a mitigation mechanism specifically designed to counter transaction reordering attacks. We implement and integrate this defense into our simulation environment, demonstrating its effectiveness under diverse conditions.
- Abstract(参考訳): 本稿では,ブロックチェーンネットワークのセキュリティを評価することを目的とした,複数の分散プロトコルからなる分散システムに対する攻撃の分析に適した,逆モデルとシミュレーションフレームワークを提案する。
我々のモデルは、障害モデル、通信モデル、およびビザンチンフォールトトレラント(BFT)プロトコルのフォールトトレランスしきい値によって定義されたターゲットプロトコルの仮定に基づいて、敵対的アクションを分類し、制約する。
目的は、敵戦略の意図した効果だけでなく、その意図しない副作用が重要なシステム特性に与える影響を研究することである。
このフレームワークを適用して、Hyperledger Fabric(HF)ブロックチェーンネットワークの公平性特性を分析する。
我々の焦点は、様々なHFサービスにまたがる協調した敵行動を含む、新しい公正攻撃である。
シミュレーションでは、特定のクライアント(クライアントの公正性)と、トランザクションの受信順序とブロックチェーンの最終順序を関連付ける影響関連保証(順序の公正性)に関して、制約のある敵でさえ公正性に反する可能性があることが示されている。
本稿では,トランザクション・リオーダ・アタックに対抗するために特別に設計された緩和機構の導入と評価により,これまでの作業を大幅に拡張する。
我々は、この防御をシミュレーション環境に実装し、その効果を多様な条件下で実証する。
関連論文リスト
- Simple Perturbations Subvert Ethereum Phishing Transactions Detection: An Empirical Analysis [12.607077453567594]
精度,精度,リコール,F1スコアなどのモデル性能指標に対する各種敵攻撃戦略の影響について検討する。
モデルロバスト性を高めるために, 対戦訓練や特徴選択の強化など, 様々な緩和策の有効性を検討する。
論文 参考訳(メタデータ) (2024-08-06T20:40:20Z) - Impact of Conflicting Transactions in Blockchain: Detecting and Mitigating Potential Attacks [0.2982610402087727]
ブロックチェーンネットワーク内のトランザクションの競合は、パフォーマンス上の問題を引き起こし、セキュリティ上の脆弱性を導入する。
我々はこれらの攻撃を緩和するための一連の対策を提案する。
私たちの発見は、ブロックチェーンのセキュリティとパフォーマンスを強化するために、競合するトランザクションを積極的に管理することの重要性を強調しています。
論文 参考訳(メタデータ) (2024-07-30T17:16:54Z) - FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks [62.897993591443594]
FullCertは、音と決定論的境界を持つ最初のエンドツーエンドの認証器である。
2つのデータセットに対してFullCertの有効性を実験的に示す。
論文 参考訳(メタデータ) (2024-06-17T13:23:52Z) - Certifiably Byzantine-Robust Federated Conformal Prediction [49.23374238798428]
本稿では,悪意のあるクライアントに対する堅牢な共形予測を行う新しいフレームワークRob-FCPを提案する。
我々は、さまざまなビザンチン攻撃の下で、悪意のあるクライアントの多様な割合に対するRob-FCPの堅牢性を実証的に実証した。
論文 参考訳(メタデータ) (2024-06-04T04:43:30Z) - Adversary-Augmented Simulation to evaluate fairness on HyperLedger Fabric [0.0]
本稿では, 敵の仮定, 目標, 能力といった概念に基づいて構築する。
古典的な分散システムモデルに基づいて、逆アクションの使用を分類し、制限する。
本研究の目的は,各種システムモデルにおけるプロトコルの特性に及ぼすこれらの許容行動の影響について検討することである。
論文 参考訳(メタデータ) (2024-03-21T12:20:36Z) - LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts [15.071155232677643]
分散型金融(DeFi)インシデントは、30億ドルを超える経済的損害をもたらした。
現在の検出ツールは、攻撃活動を効果的に識別する上で重大な課題に直面している。
本稿では,敵対的契約を公開することによって,DeFi攻撃を効果的に検出する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-14T11:39:33Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
ブロックチェーンと分散台帳技術に基づくセキュアで信頼性の高いフェデレーション学習システムを提案する。
本システムでは,オンチェーン型スマートコントラクトを利用したピアツーピア投票機構と報酬アンドスラッシュ機構を組み込んで,悪意ある行動の検出と検出を行う。
論文 参考訳(メタデータ) (2023-07-02T11:23:33Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL)は、データ共有なしで協調的なモデルトレーニングを提供する。
FLはバックドア攻撃に弱いため、有害なモデル重みがシステムの整合性を損なう。
本稿では、悪意のあるクライアントの識別を属性グラフクラスタリング問題として再解釈する保護フレームワークであるG$2$uardFLを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:15:04Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) は、敵の例の製作をモデル化するフレームワークである。
AEGは、ある仮説クラスからジェネレータとアバーサを反対に訓練することで、敵の例を設計する新しい方法を提供する。
MNIST と CIFAR-10 データセットに対する AEG の有効性を示す。
論文 参考訳(メタデータ) (2020-07-01T19:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。