論文の概要: Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
- arxiv url: http://arxiv.org/abs/2504.12773v1
- Date: Thu, 17 Apr 2025 09:13:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:56.031997
- Title: Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
- Title(参考訳): シンボリック・ニューラル統合によるマルチモーダルLCMの幾何学的問題解決能力向上
- Authors: Yicheng Pan, Zhenrong Zhang, Pengfei Hu, Jiefeng Ma, Jun Du, Jianshu Zhang, Quan Liu, Jianqing Gao, Feng Ma,
- Abstract要約: 幾何学図のステップワイズ推論パスを自動的に生成するパイプラインであるGeoGenを提案する。
正確なシンボリック推論を活用することで、textbfGeoGenは大規模で高品質な質問応答ペアを生成する。
GeoGen が生成した合成データを用いて,Large Language Model (LLM) である textbfGeoLogic を訓練する。
- 参考スコア(独自算出の注目度): 57.95306827012784
- License:
- Abstract: Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at https://github.com/ycpNotFound/GeoGen.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の最近の進歩は、一般ドメインにおける顕著な進歩を達成し、マルチモーダルな数学的推論の可能性を証明している。
しかし, MLLMを幾何学的問題解決 (GPS) に適用することは, 正確なステップバイステップの解データや推論時の幻覚が欠如しているため, 依然として困難である。
本稿では,幾何学図のステップワイズ推論パスを自動生成するパイプラインであるGeoGenを提案する。
正確なシンボリック推論を利用することで、 \textbf{GeoGen} は大規模で高品質な質問応答対を生成する。
MLLMの論理的推論能力をさらに強化するため,GeoGen が生成した合成データを用いて大言語モデル (LLM) である \textbf{GeoLogic} を訓練する。
自然言語と記号システムの橋渡しとして機能するGeoLogicは、シンボリックツールによってMLLM出力の検証を支援し、推論プロセスをより厳密で緩和する。
実験の結果,提案手法はMLLMの性能を常に改善し,幾何推論タスクのベンチマークにおいて顕著な結果が得られた。
この改善はLLMとシンボリックシステムの強みの統合に起因しており、GPSタスクに対してより信頼性と解釈可能なアプローチを可能にする。
コードはhttps://github.com/ycpNotFound/GeoGenで入手できる。
関連論文リスト
- An LLM Agent for Automatic Geospatial Data Analysis [5.842462214442362]
大規模言語モデル(LLM)は、データサイエンスコード生成タスクで使われている。
複雑なデータ構造と空間的制約を組み込むのが困難であるため,空間空間データ処理への応用は困難である。
ジオアジェント(GeoAgent)は,LLMが地理空間データ処理をより効率的に処理できるように設計された対話型フレームワークである。
論文 参考訳(メタデータ) (2024-10-24T14:47:25Z) - GeoCoder: Solving Geometry Problems by Generating Modular Code through Vision-Language Models [10.443672399225983]
視覚パラメトリックモデル(VLM)は、様々なマルチモーダルタスクにおいて大きな進歩を遂げた。
彼らはいまだに幾何学的な問題に悩まされており、事前訓練中に見えない数学的操作を行うことができないため、著しく制限されている。
モジュール型コードファインタニングを利用して,事前に定義された幾何関数ライブラリを使用してコードの生成と実行を行うGeoCoderを提案する。
論文 参考訳(メタデータ) (2024-10-17T12:56:52Z) - Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver [11.69164802295844]
視覚的特徴,幾何学的形式言語,自然言語表現を統合した新しいフレームワークを提案する。
本稿では,新しい合成データ手法を提案し,形式的および自然言語のキャプションを付加した大規模幾何データセットSynthGeo228Kを提案する。
我々のフレームワークは,MLLMの幾何学図処理能力を改善し,フォーマルなgeo7kデータセット上のオープンなタスクに応用範囲を広げる。
論文 参考訳(メタデータ) (2024-09-06T12:11:06Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
大規模言語モデル(LLM)は、人間レベルの推論と生成能力に顕著な習熟性を示している。
G-LLaVAは幾何学的問題の解法において例外的な性能を示し、7Bパラメータしか持たないMathVistaベンチマークにおいて GPT-4-V を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-18T17:36:20Z) - Large Language Models as Topological Structure Enhancers for Text-Attributed Graphs [3.5627549694751184]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野に革命をもたらした。
本研究では,LLMの情報検索とテキスト生成機能を活用して,ノード分類設定の下でのテキスト分散グラフ(TAG)のトポロジ構造を洗練・強化する方法について検討する。
論文 参考訳(メタデータ) (2023-11-24T07:53:48Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
我々は、テキスト記述、視覚図、定理知識の包括的理解を必要とする幾何学的問題を解くことに注力する。
そこで本研究では,5,010の幾何学的問題を含む幾何学的質問応答データセットGeoQAを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:34:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。