論文の概要: EarthGPT-X: Enabling MLLMs to Flexibly and Comprehensively Understand Multi-Source Remote Sensing Imagery
- arxiv url: http://arxiv.org/abs/2504.12795v1
- Date: Thu, 17 Apr 2025 09:56:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:36:51.806366
- Title: EarthGPT-X: Enabling MLLMs to Flexibly and Comprehensively Understand Multi-Source Remote Sensing Imagery
- Title(参考訳): EarthGPT-X:マルチソースリモートセンシング画像の柔軟かつ包括的理解を実現するMLLMの開発
- Authors: Wei Zhang, Miaoxin Cai, Yaqian Ning, Tong Zhang, Yin Zhuang, He Chen, Jun Li, Xuerui Mao,
- Abstract要約: リモートセンシング画像に自然空間モデルを適用することは困難である。
EarthGPT-Xはズームインとズームアウトのインサイトを提供する。
実験は、多粒度タスクにおける提案された地球GPT-Xの優位性を実証した。
- 参考スコア(独自算出の注目度): 15.581788175591097
- License:
- Abstract: Recent advances in the visual-language area have developed natural multi-modal large language models (MLLMs) for spatial reasoning through visual prompting. However, due to remote sensing (RS) imagery containing abundant geospatial information that differs from natural images, it is challenging to effectively adapt natural spatial models to the RS domain. Moreover, current RS MLLMs are limited in overly narrow interpretation levels and interaction manner, hindering their applicability in real-world scenarios. To address those challenges, a spatial MLLM named EarthGPT-X is proposed, enabling a comprehensive understanding of multi-source RS imagery, such as optical, synthetic aperture radar (SAR), and infrared. EarthGPT-X offers zoom-in and zoom-out insight, and possesses flexible multi-grained interactive abilities. Moreover, EarthGPT-X unifies two types of critical spatial tasks (i.e., referring and grounding) into a visual prompting framework. To achieve these versatile capabilities, several key strategies are developed. The first is the multi-modal content integration method, which enhances the interplay between images, visual prompts, and text instructions. Subsequently, a cross-domain one-stage fusion training strategy is proposed, utilizing the large language model (LLM) as a unified interface for multi-source multi-task learning. Furthermore, by incorporating a pixel perception module, the referring and grounding tasks are seamlessly unified within a single framework. In addition, the experiments conducted demonstrate the superiority of the proposed EarthGPT-X in multi-grained tasks and its impressive flexibility in multi-modal interaction, revealing significant advancements of MLLM in the RS field.
- Abstract(参考訳): 近年,視覚的プロンプトによる空間推論のための自然多モーダル大言語モデル (MLLM) が開発されている。
しかし,自然画像とは異なる地理空間情報を含むリモートセンシング(RS)画像により,自然空間モデルをRS領域に効果的に適用することは困難である。
さらに、現在のRS MLLMは、過度に狭い解釈レベルとインタラクションの方法に制限されており、現実のシナリオにおけるそれらの適用性を妨げている。
これらの課題に対処するため、EarthGPT-Xという空間MLLMを提案し、光学、合成開口レーダ(SAR)、赤外線などのマルチソースRS画像の包括的理解を可能にした。
EarthGPT-Xはズームインとズームアウトのインサイトを提供する。
さらに、EarthGPT-Xは、2種類の重要な空間的タスク(つまり、参照と接地)を視覚的プロンプトフレームワークに統合する。
これらの汎用性を達成するために、いくつかの重要な戦略が開発されている。
1つ目は、画像、視覚的プロンプト、テキスト命令間の相互作用を強化するマルチモーダルコンテンツ統合手法である。
その後、マルチソースマルチタスク学習のための統一インターフェースとして、大規模言語モデル(LLM)を利用したクロスドメインワンステージ融合訓練戦略を提案する。
さらに、画素認識モジュールを組み込むことで、参照および接地タスクを単一のフレームワークにシームレスに統合する。
さらに、提案したEarthGPT-Xのマルチグラデーションタスクにおける優位性と、マルチモーダル相互作用における顕著な柔軟性を実証し、RS分野におけるMLLMの顕著な進歩を明らかにした。
関連論文リスト
- RSUniVLM: A Unified Vision Language Model for Remote Sensing via Granularity-oriented Mixture of Experts [17.76606110070648]
複数の粒度にまたがる包括的視覚理解のための統一型エンドツーエンドRS VLMであるRSUniVLMを提案する。
RSUniVLMは、変更検出や変更キャプションのインスタンスを含む、マルチイメージ解析において効果的に機能する。
また、RSと一般ドメインの両方の既存のデータセットに基づいて、大規模なRS命令追従データセットを構築した。
論文 参考訳(メタデータ) (2024-12-07T15:11:21Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
本稿では,既存のアプローチよりもトレーニングの少ない任意の参照視覚的プロンプトの理解を促進するための,MLLM(Multimodal Large Language Models)を提案する。
本手法は,視覚的プロンプトを,MLLMに理解可能な特定の空間領域を伝達する空間概念として応用する。
我々はまた、MLLMの領域レベルの理解を視覚的プロンプトを参照する特定の形式にさらに引き離すための幾何非依存学習パラダイム(GAL)を提案する。
論文 参考訳(メタデータ) (2024-09-25T08:22:00Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々はDraw-and-Understandフレームワークを提案し、視覚的プロンプト理解機能をMLLM(Multimodal Large Language Models)に統合する方法を探る。
視覚的なプロンプトにより、ユーザーはマルチモーダルなインストラクションを通じて対話することができ、モデルの対話性ときめ細かなイメージ理解を高めることができる。
本稿では,様々な学習済みMLLMに適応し,様々な視覚的プロンプトを認識可能な汎用アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - LHRS-Bot: Empowering Remote Sensing with VGI-Enhanced Large Multimodal Language Model [10.280417075859141]
本稿では,新しい視覚言語アライメント戦略とカリキュラム学習手法を通じて,RS画像理解に適したMLLMであるLHRS-Botを紹介する。
総合的な実験により、LHRS-BotはRS画像の深い理解と、RS領域内でニュアンス推論を行う能力を示すことが示された。
論文 参考訳(メタデータ) (2024-02-04T15:46:43Z) - EarthGPT: A Universal Multi-modal Large Language Model for Multi-sensor
Image Comprehension in Remote Sensing Domain [11.902077343294707]
マルチモーダル大言語モデル(MLLM)は、自然画像領域における視覚および視覚言語タスクにおいて顕著な成功を収めている。
このギャップを埋めるために,EarthGPTと呼ばれる先駆的なMLLMが,様々なマルチセンサRS解釈タスクを統一的に統合する手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T08:57:48Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
モデル重み、チューニングタスク、視覚埋め込みを併用した多目的多モード大言語モデル(MLLM)を提案する。
提案したジョイントミキシングに基づいて,高解像度画像のきめ細かい外観をより正確に捉えるための効率的な手法を提案する。
今後のMLLM研究におけるジョイントミキシングの探求に光を当てることを願っている。
論文 参考訳(メタデータ) (2023-11-13T18:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。