3D-PNAS: 3D Industrial Surface Anomaly Synthesis with Perlin Noise
- URL: http://arxiv.org/abs/2504.12856v1
- Date: Thu, 17 Apr 2025 11:23:17 GMT
- Title: 3D-PNAS: 3D Industrial Surface Anomaly Synthesis with Perlin Noise
- Authors: Yifeng Cheng, Juan Du,
- Abstract summary: We propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization.<n>Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction.
- Score: 1.6585375093252448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large pretrained vision foundation models have shown significant potential in various vision tasks. However, for industrial anomaly detection, the scarcity of real defect samples poses a critical challenge in leveraging these models. While 2D anomaly generation has significantly advanced with established generative models, the adoption of 3D sensors in industrial manufacturing has made leveraging 3D data for surface quality inspection an emerging trend. In contrast to 2D techniques, 3D anomaly generation remains largely unexplored, limiting the potential of 3D data in industrial quality inspection. To address this gap, we propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization. Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction. Through comprehensive visualization experiments, we demonstrate how key parameters - including noise scale, perturbation strength, and octaves, provide fine-grained control over the generated anomalies, enabling the creation of diverse defect patterns from pronounced deformations to subtle surface variations. Additionally, our cross-category experiments show that the method produces consistent yet geometrically plausible anomalies across different object types, adapting to their specific surface characteristics. We also provide a comprehensive codebase and visualization toolkit to facilitate future research.
Related papers
- SIGMAN:Scaling 3D Human Gaussian Generation with Millions of Assets [72.26350984924129]
We propose a latent space generation paradigm for 3D human digitization.
We transform the ill-posed low-to-high-dimensional mapping problem into a learnable distribution shift.
We employ the multi-view optimization approach combined with synthetic data to construct the HGS-1M dataset.
arXiv Detail & Related papers (2025-04-09T15:38:18Z) - Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View Synthesis [22.767866875051013]
We propose GS-Diff, a novel 3DGS framework guided by a multi-view diffusion model to address limitations of current methods.<n>By generating pseudo-observations conditioned on multi-view inputs, our method transforms under-constrained 3D reconstruction problems into well-posed ones.<n> Experiments on four benchmarks demonstrate that GS-Diff consistently outperforms state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2025-04-02T17:59:46Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
We introduce DSplats, a novel method that directly denoises multiview images using Gaussian-based Reconstructors to produce realistic 3D assets.
Our experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction.
arXiv Detail & Related papers (2024-12-11T07:32:17Z) - R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection [12.207437451118036]
3D anomaly detection plays a crucial role in monitoring parts for localized inherent defects in precision manufacturing.
Embedding-based and reconstruction-based approaches are among the most popular and successful methods.
We propose R3D-AD, reconstructing anomalous point clouds by diffusion model for precise 3D anomaly detection.
arXiv Detail & Related papers (2024-07-15T16:10:58Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - 3D GANs and Latent Space: A comprehensive survey [0.0]
3D GANs are a new type of generative model used for 3D reconstruction, point cloud reconstruction, and 3D semantic scene completion.
The choice of distribution for noise is critical as it represents the latent space.
In this work, we explore the latent space and 3D GANs, examine several GAN variants and training methods to gain insights into improving 3D GAN training, and suggest potential future directions for further research.
arXiv Detail & Related papers (2023-04-08T06:36:07Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z) - The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and
Localization [17.437967037670813]
We introduce the first comprehensive 3D dataset for the task of unsupervised anomaly detection and localization.
It is inspired by real-world visual inspection scenarios in which a model has to detect various types of defects on manufactured products.
arXiv Detail & Related papers (2021-12-16T17:35:51Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.