論文の概要: FashionDPO:Fine-tune Fashion Outfit Generation Model using Direct Preference Optimization
- arxiv url: http://arxiv.org/abs/2504.12900v1
- Date: Thu, 17 Apr 2025 12:41:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:34:57.580240
- Title: FashionDPO:Fine-tune Fashion Outfit Generation Model using Direct Preference Optimization
- Title(参考訳): 直接選好最適化を用いたFashionDPO:Fine-Tune Fashion Outfit Generation Model
- Authors: Mingzhe Yu, Yunshan Ma, Lei Wu, Changshuo Wang, Xue Li, Lei Meng,
- Abstract要約: そこで本研究では,ファッション服のファッション生成モデルであるファッションDPO(FashionDPO)を,直接選好最適化を用いて微調整する手法を提案する。
このフレームワークは、タスク固有の報酬関数を設計することなく、ファッション生成モデルに対する汎用的な微調整アプローチを提供することを目的としている。
iFashionとPolyvore-Uの2つのデータセットの実験では、モデルのパーソナライズされた好みに合わせる能力を高める上で、我々のフレームワークの有効性が示されている。
- 参考スコア(独自算出の注目度): 12.096130595139364
- License:
- Abstract: Personalized outfit generation aims to construct a set of compatible and personalized fashion items as an outfit. Recently, generative AI models have received widespread attention, as they can generate fashion items for users to complete an incomplete outfit or create a complete outfit. However, they have limitations in terms of lacking diversity and relying on the supervised learning paradigm. Recognizing this gap, we propose a novel framework FashionDPO, which fine-tunes the fashion outfit generation model using direct preference optimization. This framework aims to provide a general fine-tuning approach to fashion generative models, refining a pre-trained fashion outfit generation model using automatically generated feedback, without the need to design a task-specific reward function. To make sure that the feedback is comprehensive and objective, we design a multi-expert feedback generation module which covers three evaluation perspectives, \ie quality, compatibility and personalization. Experiments on two established datasets, \ie iFashion and Polyvore-U, demonstrate the effectiveness of our framework in enhancing the model's ability to align with users' personalized preferences while adhering to fashion compatibility principles. Our code and model checkpoints are available at https://github.com/Yzcreator/FashionDPO.
- Abstract(参考訳): パーソナライズド・ウェア・ジェネレーション(Personalized outfit generation)は、ファッションアイテムをファッションとして、互換性のある、パーソナライズされたセットを構築することを目的とする。
近年、生成型AIモデルは、ユーザーが不完全な服を仕上げたり、完全な服を作るためにファッションアイテムを作成できるため、広く注目を集めている。
しかし、多様性の欠如や教師付き学習パラダイムに依存している点で制限がある。
このギャップを認識するために,ファッション服のファッション生成モデルを選好最適化を用いて微調整する新しいフレームワークFashionDPOを提案する。
本フレームワークは,タスク固有の報酬関数を設計することなく,自動生成フィードバックを用いて事前学習したファッション衣装生成モデルを改良し,ファッション生成モデルに対する汎用的な微調整アプローチを提供することを目的とする。
フィードバックが包括的で客観的であることを確認するため、我々は3つの評価視点(品質、互換性、パーソナライゼーション)をカバーするマルチエキスパートフィードバック生成モジュールを設計する。
確立された2つのデータセットである \ie iFashion と Polyvore-U の実験は、ファッション互換性の原則を守りながら、ユーザのパーソナライズされた好みに合わせる能力を高める上で、我々のフレームワークの有効性を実証している。
私たちのコードとモデルチェックポイントはhttps://github.com/Yzcreator/FashionDPO.orgで公開されています。
関連論文リスト
- Learning to Synthesize Compatible Fashion Items Using Semantic Alignment and Collocation Classification: An Outfit Generation Framework [59.09707044733695]
衣料品全体を合成することを目的とした,新しい衣料品生成フレームワークであるOutfitGANを提案する。
OutfitGANにはセマンティックアライメントモジュールがあり、既存のファッションアイテムと合成アイテムのマッピング対応を特徴付ける。
提案モデルの性能を評価するため,20,000のファッション衣装からなる大規模データセットを構築した。
論文 参考訳(メタデータ) (2025-02-05T12:13:53Z) - Towards Intelligent Design: A Self-driven Framework for Collocated Clothing Synthesis Leveraging Fashion Styles and Textures [17.35328594773488]
衣料品合成(CCS)はファッション技術において重要な話題となっている。
これまでの調査では、上着と下着のペアのようなペアの衣装を使って、この課題を達成するための生成モデルを訓練していた。
そこで我々は,組立衣料を必要とせず,組立衣料を合成する,スタイル・テクスチャ誘導型生成ネットワーク(ST-Net)を新たに導入した。
論文 参考訳(メタデータ) (2025-01-23T05:46:08Z) - Personalized Preference Fine-tuning of Diffusion Models [75.22218338096316]
拡散モデルとパーソナライズされた嗜好を整合させるマルチリワード最適化の目的であるPDを導入する。
PPDでは、拡散モデルがユーザーの個人の好みを数秒で学習する。
提案手法は,Stable Cascadeに対して平均76%の勝利率を達成し,特定のユーザの好みをより正確に反映した画像を生成する。
論文 参考訳(メタデータ) (2025-01-11T22:38:41Z) - Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment [51.14207112118503]
我々は、優先順位を効率的に捉えるために、応答を潜在空間に埋め込むアプローチである選好埋め込みを導入する。
また、人間からのフィードバックから報酬に基づく強化学習を一般化する嗜好スコアに基づく一般選好最適化(GPO)を提案する。
提案手法は,基礎モデルの微妙な人的価値との整合性を高めることができる。
論文 参考訳(メタデータ) (2024-10-03T04:22:55Z) - Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference [4.667044856219814]
本稿では,大規模言語モデル(LLM)の表現力を利用した,個人化された衣装推薦手法を提案する。
MLLM(Multimodal Large Language Model)を用いた画像キャプションによる項目記述の視覚的・テキスト的ギャップを橋渡しする。
このフレームワークは、Polyvoreデータセットで評価され、その効果を2つの重要なタスク、すなわちFill-in-the-blankと補完的なアイテム検索で実証する。
論文 参考訳(メタデータ) (2024-09-18T17:15:06Z) - Lost Your Style? Navigating with Semantic-Level Approach for
Text-to-Outfit Retrieval [2.07180164747172]
ファッションレコメンデーションの基盤となるアプローチとして,テキスト・ツー・アウトフィット検索タスクを導入する。
我々のモデルは3つのセマンティックレベル、スタイル、服装で考案され、各レベルがデータを段階的に集約し、一貫性のある服装勧告を形成する。
メリーランド・ポリボアとポリボア・アウトフィットのデータセットを用いて,本手法はテキストビデオ検索タスクにおける最先端モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2023-11-03T07:23:21Z) - VICTOR: Visual Incompatibility Detection with Transformers and
Fashion-specific contrastive pre-training [18.753508811614644]
Visual InCompatibility TransfORmer (VICTOR) は、1) 回帰としての全体的な互換性、2) ミスマッチアイテムの検出の2つのタスクに最適化されている。
Polyvore-MISFITと呼ばれる新しいデータセットを作成し、部分的にミスマッチした服を生成するために、Polyvoreの服のベンチマークを構築した。
一連のアブレーションと比較分析により、提案されたアーキテクチャは、現在のPolyvoreデータセットの最先端を競合し、越えることが可能であることを示している。
論文 参考訳(メタデータ) (2022-07-27T11:18:55Z) - Addressing the Cold-Start Problem in Outfit Recommendation Using Visual
Preference Modelling [51.147871738838305]
本稿では,新しい視覚的嗜好モデリング手法を活用することで,新規ユーザに対するコールドスタート問題に対処する。
機能重み付けクラスタリングによるアプローチの活用を実演し、時事指向の衣装レコメンデーションをパーソナライズする。
論文 参考訳(メタデータ) (2020-08-04T10:07:09Z) - Personalized Fashion Recommendation from Personal Social Media Data: An
Item-to-Set Metric Learning Approach [71.63618051547144]
ソーシャルメディアデータからパーソナライズされたファッションレコメンデーションの問題について検討する。
本稿では,ユーザの過去のファッションアイテムと新しいファッションアイテムとの類似性を学習する,アイテムツーセットのメトリック学習フレームワークを提案する。
提案手法の有効性を検証するために,実世界のソーシャルメディアデータセットを収集する。
論文 参考訳(メタデータ) (2020-05-25T23:24:24Z) - Learning Diverse Fashion Collocation by Neural Graph Filtering [78.9188246136867]
本稿では,グラフニューラルネットワークを用いて,フレキシブルなファッションアイテムセットをモデル化する新しいファッションコロケーションフレームワークであるNeural Graph Filteringを提案する。
エッジベクトルに対称演算を適用することにより、このフレームワークは様々な入力/出力を許容し、それらの順序に不変である。
提案手法を,Polyvoreデータセット,Polyvore-Dデータセット,Amazon Fashionデータセットの3つの一般的なベンチマークで評価した。
論文 参考訳(メタデータ) (2020-03-11T16:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。