Vision and Language Integration for Domain Generalization
- URL: http://arxiv.org/abs/2504.12966v1
- Date: Thu, 17 Apr 2025 14:19:09 GMT
- Title: Vision and Language Integration for Domain Generalization
- Authors: Yanmei Wang, Xiyao Liu, Fupeng Chu, Zhi Han,
- Abstract summary: Domain generalization aims at training on source domains to uncover a domain-invariant feature space.<n>Due to domain gaps, it is hard to find reliable common image feature space.<n>We propose VLCA, which combine language space and vision space, and connect the multiple image domains.
- Score: 6.730018632330614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain generalization aims at training on source domains to uncover a domain-invariant feature space, allowing the model to perform robust generalization ability on unknown target domains. However, due to domain gaps, it is hard to find reliable common image feature space, and the reason for that is the lack of suitable basic units for images. Different from image in vision space, language has comprehensive expression elements that can effectively convey semantics. Inspired by the semantic completeness of language and intuitiveness of image, we propose VLCA, which combine language space and vision space, and connect the multiple image domains by using semantic space as the bridge domain. Specifically, in language space, by taking advantage of the completeness of language basic units, we tend to capture the semantic representation of the relations between categories through word vector distance. Then, in vision space, by taking advantage of the intuitiveness of image features, the common pattern of sample features with the same class is explored through low-rank approximation. In the end, the language representation is aligned with the vision representation through the multimodal space of text and image. Experiments demonstrate the effectiveness of the proposed method.
Related papers
- WIDIn: Wording Image for Domain-Invariant Representation in Single-Source Domain Generalization [63.98650220772378]
We present WIDIn, Wording Images for Domain-Invariant representation, to disentangle discriminative visual representation.
We first estimate the language embedding with fine-grained alignment, which can be used to adaptively identify and then remove domain-specific counterpart.
We show that WIDIn can be applied to both pretrained vision-language models like CLIP, and separately trained uni-modal models like MoCo and BERT.
arXiv Detail & Related papers (2024-05-28T17:46:27Z) - Prompt Ensemble Self-training for Open-Vocabulary Domain Adaptation [45.02052030837188]
We study open-vocabulary domain adaptation (OVDA), a new unsupervised domain adaptation framework.
We design a Prompt Ensemble Self-training (PEST) technique that exploits the synergy between vision and language.
PEST outperforms the state-of-the-art consistently across 10 image recognition tasks.
arXiv Detail & Related papers (2023-06-29T03:39:35Z) - Vocabulary-free Image Classification [75.38039557783414]
We formalize a novel task, termed as Vocabulary-free Image Classification (VIC)
VIC aims to assign to an input image a class that resides in an unconstrained language-induced semantic space, without the prerequisite of a known vocabulary.
CaSED is a method that exploits a pre-trained vision-language model and an external vision-language database to address VIC in a training-free manner.
arXiv Detail & Related papers (2023-06-01T17:19:43Z) - Linguistic Query-Guided Mask Generation for Referring Image Segmentation [10.130530501400079]
Referring image segmentation aims to segment the image region of interest according to the given language expression.
We propose an end-to-end framework built on transformer to perform Linguistic query-Guided mask generation.
arXiv Detail & Related papers (2023-01-16T13:38:22Z) - Language-aware Domain Generalization Network for Cross-Scene
Hyperspectral Image Classification [15.842081807249416]
It is necessary to explore the effectiveness of linguistic mode in assisting hyperspectral image classification.
Large-scale pre-training image-text foundation models have demonstrated great performance in a variety of downstream applications.
A Language-aware Domain Generalization Network (LDGnet) is proposed to learn cross-domain invariant representation.
arXiv Detail & Related papers (2022-09-06T10:06:10Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - SPCL: A New Framework for Domain Adaptive Semantic Segmentation via
Semantic Prototype-based Contrastive Learning [6.705297811617307]
Domain adaptation can help in transferring knowledge from a labeled source domain to an unlabeled target domain.
We propose a novel semantic prototype-based contrastive learning framework for fine-grained class alignment.
Our method is easy to implement and attains superior results compared to state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-24T09:26:07Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
In this paper, we address the problem of unsupervised domain adaptation (UDA) in semantic segmentation.
Motivated by the fact that source and target domain have invariant semantic structures, we propose to exploit such invariance across domains.
We develop two affinity space adaptation strategies: affinity space cleaning and adversarial affinity space alignment.
arXiv Detail & Related papers (2020-09-26T10:28:11Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z) - Cross-domain Correspondence Learning for Exemplar-based Image
Translation [59.35767271091425]
We present a framework for exemplar-based image translation, which synthesizes a photo-realistic image from the input in a distinct domain.
The output has the style (e.g., color, texture) in consistency with the semantically corresponding objects in the exemplar.
We show that our method is superior to state-of-the-art methods in terms of image quality significantly.
arXiv Detail & Related papers (2020-04-12T09:10:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.