Tilus: A Virtual Machine for Arbitrary Low-Precision GPGPU Computation in LLM Serving
- URL: http://arxiv.org/abs/2504.12984v2
- Date: Fri, 25 Apr 2025 18:40:48 GMT
- Title: Tilus: A Virtual Machine for Arbitrary Low-Precision GPGPU Computation in LLM Serving
- Authors: Yaoyao Ding, Bohan Hou, Xiao Zhang, Allan Lin, Tianqi Chen, Cody Yu Hao, Yida Wang, Gennady Pekhimenko,
- Abstract summary: Serving Large Language Models (LLMs) is critical for AI-powered applications but demands substantial computational resources.<n>Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption.<n>Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two.
- Score: 12.068287973463786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Serving Large Language Models (LLMs) is critical for AI-powered applications but demands substantial computational resources, particularly in memory bandwidth and computational throughput. Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption. Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two and suffer from suboptimal performance due to high-level GPU programming abstractions. These abstractions restrict critical optimizations, such as fine-grained register management and optimized memory access patterns, which are essential for efficient low-precision computations. In this paper, we introduce a virtual machine (VM) designed for General-Purpose GPU (GPGPU) computing, enabling support for low-precision data types with arbitrary bit widths while maintaining GPU programmability. The proposed VM features a thread-block-level programming model, a hierarchical memory space, a novel algebraic layout system, and extensive support for diverse low-precision data types. VM programs are compiled into highly efficient GPU programs with automatic vectorization and instruction selection. Extensive experiments demonstrate that our VM efficiently supports a full spectrum of low-precision data types, and outperforms state-of-the-art low-precision kernels on their supported types. Compared to existing compilers like Triton and Ladder, as well as hand-optimized kernels such as QuantLLM and Marlin, our VM achieves performance improvements of 1.75x, 2.61x, 1.29x and 1.03x, respectively.
Related papers
- MoE-Lens: Towards the Hardware Limit of High-Throughput MoE LLM Serving Under Resource Constraints [7.287566040274871]
MoE-Lens is an inference system designed through holistic performance modeling for resource-constrained environments.<n>It captures the system execution mechanisms to identify the key hardware bottlenecks and accurately predict the achievable throughput.<n> evaluated on diverse MoE models and datasets, MoE-Lens outperforms the state-of-the-art solution by 4.6x on average (up to 25.5x)
arXiv Detail & Related papers (2025-04-12T21:26:56Z) - Mind the Memory Gap: Unveiling GPU Bottlenecks in Large-Batch LLM Inference [4.497936996651617]
Large language models have been widely adopted across different tasks, but their auto-regressive generation nature often leads to inefficient resource utilization during inference.<n>In this paper, through an in-depth GPU-level analysis, we reveal that large-batch inference remains memory-bound, with most GPU compute capabilities underutilized due to DRAM bandwidth saturation as the primary bottleneck.
arXiv Detail & Related papers (2025-03-11T11:21:35Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests.
Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests.
arXiv Detail & Related papers (2024-07-22T14:37:58Z) - Support Vector Machine Implementation on MPI-CUDA and Tensorflow
Framework [0.0]
Support Vector Machine (SVM) algorithm requires a high computational cost to solve a complex quadratic programming (QP) optimization problem.
parallel multi-architecture, available in both multi-core CPUs and highly scalable GPU, emerges as a promising solution to enhance algorithm performance.
This paper achieves a comparative study that implements the SVM algorithm on different parallel architecture frameworks.
arXiv Detail & Related papers (2023-11-25T02:52:37Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
We envision a decentralized system unlocking the potential vast untapped consumer-level GPU.
This system faces critical challenges, including limited CPU and GPU memory, low network bandwidth, the variability of peer and device heterogeneity.
arXiv Detail & Related papers (2023-09-03T13:27:56Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - PowerFusion: A Tensor Compiler with Explicit Data Movement Description
and Instruction-level Graph IR [10.059491353103526]
We propose IntelliGen, a tensor compiler that can generate high-performance code for memory-intensive operators.
IntelliGen considers both computation and data movement optimizations.
We evaluate IntelliGen on NVIDIA GPU, AMD GPU, and Cambricon MLU, showing speedup up to 1.97x, 2.93x, and 16.91x (1.28x, 1.23x, and 2.31x on average)
arXiv Detail & Related papers (2023-07-11T03:17:40Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMM is a lookup table based approach for the execution of ultra low-precision convolutional neural networks on SIMD hardware.
Our implementation outperforms corresponding 8-bit integer kernels by up to 1.74x on x86 platforms.
arXiv Detail & Related papers (2023-04-18T15:13:10Z) - ParaGraph: Weighted Graph Representation for Performance Optimization of
HPC Kernels [1.304892050913381]
We introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree.
We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region.
Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.
arXiv Detail & Related papers (2023-04-07T05:52:59Z) - PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine [68.8204255655161]
Support Vector Machines (SVMs) are widely used in machine learning.
However, even modern and optimized implementations do not scale well for large non-trivial dense data sets on cutting-edge hardware.
PLSSVM can be used as a drop-in replacement for an LVM.
arXiv Detail & Related papers (2022-02-25T13:24:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.