論文の概要: Prototypes are Balanced Units for Efficient and Effective Partially Relevant Video Retrieval
- arxiv url: http://arxiv.org/abs/2504.13035v1
- Date: Thu, 17 Apr 2025 15:43:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:38.256858
- Title: Prototypes are Balanced Units for Efficient and Effective Partially Relevant Video Retrieval
- Title(参考訳): プロトタイプは、効率的かつ効果的な部分関連ビデオ検索のためのバランスの取れた単位である
- Authors: WonJun Moon, Cheol-Ho Cho, Woojin Jun, Minho Shim, Taeoh Kim, Inwoong Lee, Dongyoon Wee, Jae-Pil Heo,
- Abstract要約: 本稿では,ビデオ内のさまざまなコンテキストを一定数のプロトタイプにエンコードするプロトタイプPRVRフレームワークを提案する。
ビデオコンテキストを正確に符号化しながら、テキストクエリを介してプロトタイプを検索できるように、クロスモーダルおよびユニモーダル再構成タスクを実装した。
- 参考スコア(独自算出の注目度): 23.75587275795415
- License:
- Abstract: In a retrieval system, simultaneously achieving search accuracy and efficiency is inherently challenging. This challenge is particularly pronounced in partially relevant video retrieval (PRVR), where incorporating more diverse context representations at varying temporal scales for each video enhances accuracy but increases computational and memory costs. To address this dichotomy, we propose a prototypical PRVR framework that encodes diverse contexts within a video into a fixed number of prototypes. We then introduce several strategies to enhance text association and video understanding within the prototypes, along with an orthogonal objective to ensure that the prototypes capture a diverse range of content. To keep the prototypes searchable via text queries while accurately encoding video contexts, we implement cross- and uni-modal reconstruction tasks. The cross-modal reconstruction task aligns the prototypes with textual features within a shared space, while the uni-modal reconstruction task preserves all video contexts during encoding. Additionally, we employ a video mixing technique to provide weak guidance to further align prototypes and associated textual representations. Extensive evaluations on TVR, ActivityNet-Captions, and QVHighlights validate the effectiveness of our approach without sacrificing efficiency.
- Abstract(参考訳): 検索システムでは,検索精度と効率性を同時に達成することは本質的に困難である。
この課題は、特に部分関連ビデオ検索(PRVR)において顕著であり、各ビデオに対して、より多様な時間スケールでコンテキスト表現を組み込むことで、精度は向上するが、計算とメモリコストは増大する。
この二分法に対処するために,ビデオ内の様々なコンテキストを一定数のプロトタイプにエンコードするプロトタイプPRVRフレームワークを提案する。
次に,プロトタイプ内のテキストアソシエーションとビデオ理解を強化するためのいくつかの戦略と,プロトタイプが多様なコンテンツをキャプチャすることを保証するための直交的な目的を導入する。
ビデオコンテキストを正確に符号化しながら、テキストクエリを介してプロトタイプを検索できるように、クロスモーダルおよびユニモーダル再構成タスクを実装した。
クロスモーダル再構成タスクは、プロトタイプを共有空間内のテキストの特徴と整列させ、一方、ユニモーダル再構成タスクはエンコーディング中のすべてのビデオコンテキストを保存する。
さらに,ビデオミキシング技術を用いて,プロトタイプと関連するテキスト表現をさらに整合させるための弱いガイダンスを提供する。
また,TVR,ActivityNet-Captions,QVHighlightsの大規模評価により,効率を犠牲にすることなく,本手法の有効性を検証した。
関連論文リスト
- EA-VTR: Event-Aware Video-Text Retrieval [97.30850809266725]
Event-Aware Video-Text Retrievalモデルは、優れたビデオイベント認識を通じて、強力なビデオテキスト検索能力を実現する。
EA-VTRはフレームレベルとビデオレベルの視覚表現を同時にエンコードすることができ、詳細なイベント内容と複雑なイベントの時間的相互アライメントを可能にする。
論文 参考訳(メタデータ) (2024-07-10T09:09:58Z) - Chrono: A Simple Blueprint for Representing Time in MLLMs [34.036784478999245]
ビデオ言語モデルにおける文脈的・時間的理解の課題について,ビデオにおける時間的局所化の課題を探求することによって検討する。
画像テキスト事前学習MLLMに適用可能なユニバーサルシーケンス青写真であるChronoを紹介する。
我々は、最も広く使われているベンチマークであるCharades-STA、QVHighlights、ActivityNet Captions、NeXT-GQA上でのグラウンドドビデオ質問応答において、新しいSOTAを実現する。
論文 参考訳(メタデータ) (2024-06-26T06:59:09Z) - TC-Bench: Benchmarking Temporal Compositionality in Text-to-Video and Image-to-Video Generation [97.96178992465511]
生成したビデオは、新しい概念の出現と、時間経過とともに現実の動画のようにそれらの関係の遷移を取り入れるべきである、と我々は主張する。
ビデオ生成モデルの時間構成性を評価するため,細部まで作り上げたテキストプロンプトのベンチマークであるTC-Benchと,それに対応する地上の真理ビデオ,ロバストな評価指標を提案する。
論文 参考訳(メタデータ) (2024-06-12T21:41:32Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
本稿では,映像情報とテキスト情報の相乗効果を向上するための最先端フレームワークであるVaQuitAを紹介する。
データレベルでは、フレームを均一にサンプリングする代わりに、CLIPスコアランキングでガイドされるサンプリング手法を実装している。
機能レベルでは、Visual-Query Transformerと一緒にトレーニング可能なVideo Perceiverを統合します。
論文 参考訳(メタデータ) (2023-12-04T19:48:02Z) - Prompt Switch: Efficient CLIP Adaptation for Text-Video Retrieval [24.691270610091554]
本稿では,ビデオから意味的に強調された表現を純粋に学習し,ビデオ表現をオフラインで計算し,異なるテキストに対して再利用することを目的とする。
MSR-VTT, MSVD, LSMDCの3つのベンチマークデータセット上で, 最先端のパフォーマンスを得る。
論文 参考訳(メタデータ) (2023-08-15T08:54:25Z) - Fine-grained Text-Video Retrieval with Frozen Image Encoders [10.757101644990273]
2段階のテキストビデオ検索アーキテクチャであるCrossTVRを提案する。
第1段階では,既存のTVR手法とコサイン類似性ネットワークを利用して,効率的なテキスト/ビデオ候補選択を行う。
第2段階では,空間次元と時間次元の細粒度マルチモーダル情報をキャプチャするビデオテキストクロスアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2023-07-14T02:57:00Z) - Towards Fast Adaptation of Pretrained Contrastive Models for
Multi-channel Video-Language Retrieval [70.30052749168013]
マルチチャンネルビデオ言語検索は、異なるチャンネルからの情報を理解するためにモデルを必要とする。
対照的なマルチモーダルモデルは、画像やビデオやテキストのエンティティの整合に非常に効果的であることが示されている。
これら2つの行を、限られたデータとリソースを持つマルチチャンネルビデオ言語検索に迅速に適応する方法は、明らかではない。
論文 参考訳(メタデータ) (2022-06-05T01:43:52Z) - Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [55.088635195893325]
クロスビュービデオ検索のための最初の量子化表現学習法,すなわちHybrid Contrastive Quantization(HCQ)を提案する。
HCQは、粗粒度と微粒度の両方を変換器で学習し、テキストやビデオの補完的な理解を提供する。
3つのWebビデオベンチマークデータセットの実験により、HCQは最先端の非圧縮検索手法と競合する性能を示す。
論文 参考訳(メタデータ) (2022-02-07T18:04:10Z) - Prompting Visual-Language Models for Efficient Video Understanding [28.754997650215486]
本稿では,事前学習した1つの視覚言語モデルを,最小限のトレーニングで新しいタスクに効果的に適応させる方法を提案する。
静的画像とビデオのギャップを埋めるために、フレームワイドの視覚的特徴の上に軽量なトランスフォーマーを積み重ねたテンポラリな情報をエンコードする。
論文 参考訳(メタデータ) (2021-12-08T18:58:16Z) - Video Corpus Moment Retrieval with Contrastive Learning [56.249924768243375]
ビデオコーパスモーメント検索(VCMR)は、与えられたテキストクエリに意味的に対応する時間モーメントを取得することです。
VCMRのためのコントラシブラーニング(ReLoCLNet)を用いた検索・ローカリゼーションネットワークを提案する。
実験の結果、ReLoCLNetは効率のためにテキストとビデオを個別にエンコードし、その検索精度はクロスモーダル相互作用学習を採用するベースラインと匹敵する。
論文 参考訳(メタデータ) (2021-05-13T12:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。