論文の概要: ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models
- arxiv url: http://arxiv.org/abs/2504.13061v1
- Date: Thu, 17 Apr 2025 16:15:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:49.066962
- Title: ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models
- Title(参考訳): Artist Auditor:テキストから画像生成モデルでアーティストスタイルの海賊版を監査
- Authors: Linkang Du, Zheng Zhu, Min Chen, Zhou Su, Shouling Ji, Peng Cheng, Jiming Chen, Zhikun Zhang,
- Abstract要約: 本稿では,テキスト・画像生成モデルにおける新しいデータ利用監査手法を提案する。
ArtistAuditorは、多彩なスタイルの表現を得るためにスタイル抽出器を使用し、アートワークをアーティストのスタイルのサンプリングとして扱う。
6つのモデルとデータセットの組み合わせによる実験結果は、ArtistAuditorが高いAUC値を達成可能であることを示している。
- 参考スコア(独自算出の注目度): 61.55816738318699
- License:
- Abstract: Text-to-image models based on diffusion processes, such as DALL-E, Stable Diffusion, and Midjourney, are capable of transforming texts into detailed images and have widespread applications in art and design. As such, amateur users can easily imitate professional-level paintings by collecting an artist's work and fine-tuning the model, leading to concerns about artworks' copyright infringement. To tackle these issues, previous studies either add visually imperceptible perturbation to the artwork to change its underlying styles (perturbation-based methods) or embed post-training detectable watermarks in the artwork (watermark-based methods). However, when the artwork or the model has been published online, i.e., modification to the original artwork or model retraining is not feasible, these strategies might not be viable. To this end, we propose a novel method for data-use auditing in the text-to-image generation model. The general idea of ArtistAuditor is to identify if a suspicious model has been finetuned using the artworks of specific artists by analyzing the features related to the style. Concretely, ArtistAuditor employs a style extractor to obtain the multi-granularity style representations and treats artworks as samplings of an artist's style. Then, ArtistAuditor queries a trained discriminator to gain the auditing decisions. The experimental results on six combinations of models and datasets show that ArtistAuditor can achieve high AUC values (> 0.937). By studying ArtistAuditor's transferability and core modules, we provide valuable insights into the practical implementation. Finally, we demonstrate the effectiveness of ArtistAuditor in real-world cases by an online platform Scenario. ArtistAuditor is open-sourced at https://github.com/Jozenn/ArtistAuditor.
- Abstract(参考訳): DALL-E、Stable Diffusion、Midjourneyのような拡散過程に基づくテキスト・ツー・イメージ・モデルは、テキストを詳細な画像に変換することができ、芸術やデザインに広く応用できる。
そのため、アマチュアのユーザは、芸術家の作品を集め、モデルを微調整することで、プロレベルの絵画を簡単に模倣することができるため、美術品の著作権侵害に対する懸念が生じる。
これらの問題に取り組むために、以前の研究では、アートワークに視覚的に知覚できない摂動を加え、その基礎となるスタイル(摂動に基づく方法)を変更したり、アートワーク(透かしに基づく方法)にポストトレーニング後の検出可能な透かしを埋め込んだりした。
しかし、アートワークやモデルがオンラインで公開されている場合、すなわち、オリジナルのアートワークやモデル再トレーニングの変更は実現不可能である場合、これらの戦略は実現できないかもしれない。
そこで本研究では,テキスト・画像生成モデルにおけるデータ利用監査の新しい手法を提案する。
ArtistAuditorの一般的な考え方は、不審なモデルが特定のアーティストのアートワークを用いて微調整されたかどうかを、そのスタイルに関連する特徴を分析して識別することである。
具体的には、ArtistAuditorは、多彩なスタイルの表現を得るためにスタイル抽出器を使用し、アートワークをアーティストのスタイルのサンプリングとして扱う。
そして、ArtistAuditorは、訓練された識別器を問い合わせて監査決定を得る。
6つのモデルとデータセットの組み合わせによる実験結果は、ArtistAuditorが高いAUC値(>0.937)を達成可能であることを示している。
ArtistAuditorの転送可能性とコアモジュールを研究することで、実践的な実装に関する貴重な洞察を提供する。
最後に,オンラインプラットフォームScenarioによる実世界の事例におけるArtistAuditorの有効性を示す。
ArtistAuditorはhttps://github.com/Jozenn/ArtistAuditor.comでオープンソース化されている。
関連論文リスト
- IntroStyle: Training-Free Introspective Style Attribution using Diffusion Features [89.95303251220734]
本稿では,拡散モデルのみによって生成された特徴を用いて,スタイル帰属問題を解決するための学習自由フレームワークを提案する。
これはイントロスペクティブなスタイル属性(IntroStyle)と表現され、スタイル検索の最先端モデルよりも優れたパフォーマンスを示す。
また,芸術的スタイルを分離し,きめ細かなスタイル帰属性能を評価するために,スタイルハック(SHacks)の合成データセットも導入した。
論文 参考訳(メタデータ) (2024-12-19T01:21:23Z) - Art-Free Generative Models: Art Creation Without Graphic Art Knowledge [50.60063523054282]
美術関連コンテンツへのアクセスなしに訓練されたテキスト・画像生成モデルを提案する。
そこで我々は,選択した芸術スタイルのごく一部の例を用いて,シンプルな,かつ効果的なアートアダプタの学習方法を提案する。
論文 参考訳(メタデータ) (2024-11-29T18:59:01Z) - FedStyle: Style-Based Federated Learning Crowdsourcing Framework for Art Commissions [3.1676484382068315]
FedStyleはスタイルベースのフェデレーション学習クラウドソーシングフレームワークである。
アーティストは、コラボレーションのためのアートワークではなく、ローカルスタイルのモデルをトレーニングし、モデルパラメータを共有することができる。
アーティストに抽象的なスタイルの表現を学習させ、サーバと整合させることで、極端なデータ不均一性に対処する。
論文 参考訳(メタデータ) (2024-04-25T04:53:43Z) - Rethinking Artistic Copyright Infringements in the Era of Text-to-Image Generative Models [47.19481598385283]
ArtSavantは、ウィキアートの作品の参照データセットと比較することで、アーティストのユニークなスタイルを決定するツールである。
そこで我々は,3つの人気テキスト・画像生成モデルにまたがる芸術的スタイルの複製の頻度を定量的に把握するために,大規模な実証的研究を行った。
論文 参考訳(メタデータ) (2024-04-11T17:59:43Z) - Measuring the Success of Diffusion Models at Imitating Human Artists [7.007492782620398]
モデルが特定のアーティストを模倣する能力を測定する方法を示す。
コントラスト言語-画像事前訓練(CLIP)エンコーダを用いてゼロショット方式で画像の分類を行う。
また,アーティストの作品のサンプルを,これらの模倣画像と高い統計的信頼性で一致させることができることを示す。
論文 参考訳(メタデータ) (2023-07-08T18:31:25Z) - Learning to Evaluate the Artness of AI-generated Images [64.48229009396186]
アートスコア(ArtScore)は、アーティストによる本物のアートワークと画像がどの程度似ているかを評価するために設計されたメトリクスである。
我々は、写真とアートワークの生成のために事前訓練されたモデルを採用し、一連の混合モデルを生み出した。
このデータセットはニューラルネットワークのトレーニングに使用され、任意の画像の定量化精度レベルを推定する方法を学ぶ。
論文 参考訳(メタデータ) (2023-05-08T17:58:27Z) - Inversion-Based Style Transfer with Diffusion Models [78.93863016223858]
以前の任意の例として誘導された芸術的画像生成法は、しばしば形状変化の制御や要素の伝達に失敗する。
画像のキー情報を効率よく正確に学習できるインバージョンベースのスタイル転送手法(InST)を提案する。
論文 参考訳(メタデータ) (2022-11-23T18:44:25Z) - Docent: A content-based recommendation system to discover contemporary
art [0.8782885374383763]
本稿では,アート作品の画像とアーティストのコンテキストメタデータに依存する,現代美術のコンテントベースレコメンデーションシステムを提案する。
私たちは、高度な、そしてアート特有の情報を収集し、注釈付けしたアートワークを収集し、モデルをトレーニングするために使用したユニークなデータベースを作成しました。
アートスペシャリストのチームによる評価の結果、意味のあるアート作品の75%の平均的な最終評価が得られました。
論文 参考訳(メタデータ) (2022-07-12T16:26:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。